• Title/Summary/Keyword: Bone Plate

Search Result 556, Processing Time 0.034 seconds

The Biocompatibility Of Cultured Bone Marrow Cells And Gingival Fibroblasts On The Titanium Surfaces (티타늄 배양에 대한 배양골수와 치은 섬유아세포의 생체적합성)

  • Oh, Choong-Young;Park, Joon-Bong;Kwon, Young-Hyuk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.143-160
    • /
    • 1996
  • The purpose of this study was to evaluate the response in aspect of attachment and growth rate of osteoblasts and growth rate of osteoblasts and human gingival fibroblasts to the commercially pure titanium(CP titanium)and titanium alloy(Ti-6AI-4V) that are used widely as implant materials, and to obtain the basic information to ideal implant materials. In the studly, commercially pure titanium in first test group, titanium alloy(Ti-6AI-4V) in second test group, cobalt-chrome-molybdenum alloy(Co-Cr-Mo alloy) in positive control group, and tissue culture polystyrene plate in negative control group were used. The results of this study were as follows. 1. Bone marrow cells cultured on CP titanium and Ti-6Al-4V showed significantly greater attachment and growth rate(p(0.05) compared to Co-Cr-Mo alloy in each time. 2. There were no significant differences(p>0.05) in attachment and growth rate of bone marrow cells cultured on CP titanium and Ti-6AI-4V or tissue culture plate. 3. Most bone marrow cells cultured on CP titanium, Ti-6Al-4V and tissue culture plate were attached well to each substratum in first 2days, and then, grew at higher growth rate. On the other hand, some cells cultured on Co-Cr-Mo alloy failed to attach in first 2 days, and then, attached cells grew at lower growth rate than other groups. 4. Attachment and growth rates of gingival fibroblasts cultured on CP titanium and Ti-6Al-4V showed no significant differences(p>0.05) compared to Co-Cr-Mo alloy in 2 days, but significantly greater increase(p<0.05) in 5 and 9 days. 5. There were no significantly differences(p>0.05) between growth rates on gingival fibroblasts cultured on CP titanium, Ti-6Al-4V and tissue culture plate in 2 and 5days, but a significant lower growth rate(p<0.05) on CP titanium and Ti-6Al-4V versus tissue culture plate. 6. Some gingival fibroblasts cultured on all specimen groups failed to attach, but attached cells grew well, especially on CP titanium, Ti-GAl-4V and tissue culture plate. 7. There were no significant differences(P>0.05) between growth rates of both bone marrow cells and gingival fibroblasts cultured on CP titanium and Ti-6AI-4V. As a result of this study, both commercially pure titanium and Ti-6AI-4V showed excellent biocompatibility and there was no significant difference in the cellular response to the both metals. Bone marrow cells cultured on each substratum showed significantly greater growth rate and responded sensitively to cytotoxic effects of metal surfaces compared to gingival fibroblasts. Considering cell response to the substrate, it was likely that the composition itself of titanium metals have no significant effect on the biocompatibility. Further study need to be done to evaluate the influence of surface characteristics on cellular responses.

  • PDF

The Results of the First Ray Forefoot Osteotomy Using Low Profile Wedge Plate without a Bone Grafting for Pes Planus Correction (제 1열 전족부 절골술을 통한 평발 교정에 있어 골이식 없이 사용한 소형 쐐기형 금속판의 치료 결과)

  • Choi, Jun Young;Shin, Myung Jin;Suh, Jin Soo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.21 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • Purpose: We retrospectively analyzed the radiographic and clinical results after the first ray of forefoot osteotomy using low profile wedge plate without additional cancellous bone grafting for pes planus correction. Materials and Methods: Twenty-four patients were enrolled in this study. Medial cuneiform opening wedge osteotomy was performed in 12 patients (Cotton osteotomy, group C) and first metatarsal base osteotomy was performed in 12 patients (group MT). Results: On average, the wedge size was 5.61 mm (5~6 mm). The mean time to radiographic union was 3.18 and 3.27 months in groups C and MT, respectively. Postoperative talonavicular coverage angle, talo-first metatarsal angle (anteroposterior), talo-first metatarsal angle (lateral), talo-calcaneal angle (lateral), medial cuneiform height, and American orthopaedic foot, as well as ankle society midfoot scale were significantly improved in both groups. Nonunion, delayed union or fixation failure was not presented in our series. Conclusion: We have shown that low profile wedge plate was effective in the case of first ray forefoot osteotomy for pes planus correction without any additional cancellous bone grafting.

Repair of Closed Bilateral Mandibular Fractures Using Bone Plate and Screw in Dogs (개에서 골판을 이용한 비개방성 양측성 하악골절의 수복)

  • 정순욱;한현정;김지선;김준영;정만복
    • Journal of Veterinary Clinics
    • /
    • v.20 no.1
    • /
    • pp.138-141
    • /
    • 2003
  • First case, a one-year-old female Shih Tzu weighing 3 kg with closed transverse fractures of bilateral mandibular body between 2nd and 3rd premolar teeth were treated surgically with bone plates and screws, and cranial luxation of temporomandibular joints were reduced to closed method. Second case, a 8.4 years old male Yorkshire terrier weighing 2.6 kg with closed transverse/oblique fractures of bilateral mandibular body between premolar and molar teeth were treated surgically with bone plates and screws. Radiographic examination revealed that the fractures in two cases fixed well and temporomandibular joint was stabilized. One month after operation, jaw activity was excellent and malocclusion wasn't observed.

CLINICAL AND RADIOLOGICAL COMPARISON BETWEEN TITANIUM AND BIODEGRADABLE MINIPLATE MONOCORTICAL OSTEOSYNTHESIS IN MANDIBULAR ANGLE FRACTURES (Monocortical Osteosynthesis 이론에 따른 하악골 우각부 골절 수술시 Titanium miniplate와 Biodegradable miniplate의 임상적, 방사선학적 비교 연구)

  • Choi, Eun-Joo;Nam, Woong;Jung, Young-Soo;Kim, Ki-Ho;Kim, Hyung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.3
    • /
    • pp.222-225
    • /
    • 2006
  • The treatment objective of mandibular fracture is a return to normal function. According to Champy, a rigid fixation of mandibular angle fracture is performed by using 4 or 6 holes titanium miniplates on the external oblique ridge of mandible. However, the limitations of metal plate such as hypersensitivity, interference with the cranio-facial growth of growing child, secondary bone resorption around the plate, foreign body reaction, declination of primary callus formation, and bone atrophy due to the lack of normal stress reaction of the bone have been reported. Recently, biodegradable miniplate has been introduced and used as an alternative to the metal plate despite its lower strength than that of the titanium plate and the side effect caused by the resorption in the body. In this study, 61 patients diagnosed as mandibular angle fracture and treated from Jan. 1998 to Dec. 2004 in our department have been reviewed. Metal plate fixation was used in 50 patients and biodegradable plate fixation in 11 patients on the external oblique ridge around the fractured mandibular angle according to the principle of monocortical osteosynthesis by Champy. We compared the incidence of side effects and the degree of bony union at the mandibular inferior border in two different fixation methods. In conclusion, we have found that one miniplate regardless of matter could provide enough strength to grasp bony fragments of the tension site and compress the inferior border of mandible without any complications.

THE LIMITATION OF ALVEOLAR BONE REMODELING DURING RETRACTION OF THE UPPER ANTERIOR TEETH (상악 전치부 견인 시 치아이동에 따른 전방 치조골개조량의 변화에 관한 연구)

  • Hwang, Chung-Ju;Moon, Jeong-Lyon
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.97-105
    • /
    • 2001
  • In many cases of orthodontic treatment the upper anterior teeth are retracted. Periodontal problems may arise during incisor retraction, if the amount of tooth movement and the amount of remodeling in the anterior cortical bone are not the same. Therefore in this study, to find out the relationship between the amount of tooth movement and the amount of bone remodeling during retraction of the upper anterior teeth, lateral cephalograms of 56 female patients over 18-year-old were taken before and after treatment. Among the 56 patients, two groups were divided according to the type of root movement during retraction. 26 patients mainly moved by tipping and 30 by bodily movement. The cephalograms taken before and after treatment were superimposed upon the true horizontal plane. In the Tip-Group, the horizontal bone remodeling/tooth movement ratio was 1:1.63, and in the Torque-Group it was 1:1.66. Because the amount of tooth movement and the amount of bone remodeling were not the same in both groups, in the Tip-Group the root apex moved away from the palatal cortical plate and closer to the labial cortical plate, whereas in the Torque-Group the root moved away from the labial cortical plate and closet to the palatal cortical plate. Therefore, there are limitations in the amount of incisor retraction in patients with a very thin anterior cortical plate in the maxilla, and in patients with severe skeletal discrepancies orthognathic surgery should be considered and when orthodontic camouflage treatment is the only possible method, the orthodontist must be aware of the limitations of treatment.

  • PDF

A Study On Shape Design of Implant Systems For Bone Fracture Operations By Using Finite Element Method (유한요소법을 이용한 골절치료용 임플란트 시스템 형상설계에 관한 연구)

  • Cho, Ji-Hyun;Seo, Keum-Hee;Seo, Tae-il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.425-432
    • /
    • 2012
  • This paper investigates shape design processes of two implant systems for bone fracture treatment ; Bone plate and Interlocking nail system. These systems can directly fix fractured human bones by surgical operations. The bone plates consist of various shaped plates and implant screws for fixation of fractured human bones with various manual instruments allowing to handle them. The material corresponds to titanium alloy Ti6Al4V because it is harmless material for human body as well as significantly rigid. This system has to be suitably rigid as well as manually bended in orthopedic surgery operations. The Interlocking nail system is a kind of nail implanted inside fractured human bones. The shapes of these systems have to be suitably designed in order to endure various loads as well as avoid any damages. If various shaped prototypes would be fabricated and tested to design the optimal shapes, optimal shapes could be obtained but very long time and expensive costs must be required. In this paper finite element method was applied into these systems. Under various boundary conditions a series of structural analysis was conducted by using ANSYS. Finally important shape factors could be determined on the basis of the analysis results.

Fatigue Characterization of Glass/Polypropylene Composite Bone Plates Locked with an Artificial Tibia under Moisture Environment (인조골에 체결된 유리섬유/폴리프로필렌 복합재료 고정판의 수분 환경 피로 특성)

  • Han, Min-Gu;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.328-333
    • /
    • 2013
  • In this study, bone plate made of glass/polypropylene composite material which was applied to an artificial bone was tested to check the service ability under fatigue loading. To check serviceability of composite bone plates fatigue test was carried out considering changes in the moisture absorption rate, locking position of screws and loading condition. Test results showed that all the tested specimens had the fatigue life more than one million cycles which was much higher fatigue life than the expected value of 650,000 cycles. Screw position was not critical impact on the deformation of the fracture site. In this paper, the mechanical performance of the glass/polypropylene composite was verified by fatigue test under various water absorption conditions, and this result may give useful information on the design of composite bone plate.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE EFFECT OF CORTICAL ENGAGEMENT ON IMPLANT LOAD TRANSFER IN POSTERIOR MANDIBLE (하악구치부 피질골 engagement가 임플란트 하중전달에 미치는 영향에 관한 3차원 유한요소법적 응력분석)

  • Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.607-619
    • /
    • 1999
  • Cortical support is an important factor, as the engagement of the fixture in strong compact bone offers an increased load-carrying capacity and initial stability. Because of the poor bone quality in the posterior mandible and other anatomic considerations, it has been suggested that implant fixtures be placed in these locations with apical engagement of the lingual cortical plate for so-called bicortication. The purpose of this investigation was to determine the effect of cortical engagements and in addition polyoxymethylene(POM) intramobile connector(IMC) of IMZ implant on implant load transfer in edentulous posterior segment of mandible, using three-dimensional (3D) finite element analysis models composed of cortical and trabecular bone involving single implant. Variables such as (1) the crestal peri-implant defect, (2) the apical engagement of lingual cortical plate, (3) the occlusal contact position (a vertical load at central fossa or buccal cusp tip), and (4) POM IMC were investigated. Stress patterns were compared and interfacial stresses along the bone-implant interface were monitored specially. Within the scope of this study, the following observations were made. 1) Offset load and angulation of fixture led to increase the local interfacial stresses. 2) Stresses were concentrated toward the cortical bones, but the crestal peri-implant defect increased the interfacial stresses in trabecular bone. 3) For the model with bicortication, it was noticed that the crestal cortical bone provided more resistance to the bending moment and the lingual cortical plate provided more support for the vertical load. But Angulation problem of the fixture from the lingual cortical engagement caused the local interfacial stress concentrations. 4) It was not clear that POM IMC had the effect on stress distribution under the present experimental conditions, especially for the cases of crestal peri-implant defect.

  • PDF

Intercalary Tricortical Iliac Bone Graft in the Surgical Treatment of Nonunion of Midshaft Clavicular Fractures (쇄골 간부 불유합에서의 개재 삼면피질 장골 이식술)

  • Cho, Chul-Hyun;Jang, Hyung-Gyu
    • Clinics in Shoulder and Elbow
    • /
    • v.15 no.1
    • /
    • pp.32-36
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the radiologic and clinical outcomes after intercalary tricortical iliac bone graft with plate fixation for the nonunion of midshaft clavicular fractures. Material and Methods: Between September 2007 and May 2011, 10 patients who were treated by the intercalary tricortical iliac bone graft, with plate fixation for clavicle nonunion, were studied. The mean follow-up period was 30.7 (12~57) months. After the sclerotic bone was excised to the bleeding cortical bone, we interposed the tricortical iliac bone to provide structural support and restore clavicle length, and then fixed the plate and screws. The radiologic outcomes on the serial plain radiographs and clinical outcomes, according to UCLA, ASES and Quick DASH scores, were analyzed. Results: Bony union was obtained in all cases (100%) and the average union time was 18.4 (14~24) weeks. The average respective UCLA and ASES scores improved from 16.7 and 52.1 preoperatively to 27.4 and 83.6 postoperatively (p<0.05). The average Quick DASH score was 40.5, at the final follow-up. Complications were 2 shoulder stiffness, and one case had removal of device and arthroscopic surgery at 11 months, postoperatively. There were no implant failure or infection. Conclusion: Intercalary tricortical iliac bone graft, with plate fixation for the nonunion of midshaft clavicular fractures, is a good option that can provide structural support and restore clavicle length, as well as high union rate.

Mini-open Treatment Using Plate of Clavicle Mid-shaft Fractures

  • Park, Yong-Geun;Kang, Hyunseong;Kim, Shinil;Bae, Jong-Hwan;Choi, Sungwook
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.1
    • /
    • pp.37-41
    • /
    • 2017
  • Background: Increased frequency of comminuted clavicle mid-shaft fractures and importance of functional satisfaction through early joint exercise has resulted in higher emphasis on surgical treatments. This study aimed to evaluate the clinical radiological results of treatment of clavicle mid-shaft fractures by open reduction and internal fixation using a plate with a small incision. Methods: The subjects of this study were 80 clavicle mid-shaft fracture cases treated with internal fixation using a plate from October 2010 to July 2014. Clavicle mid-shaft fractures were internally fixated using anatomical plates or locking compression plates. Achievement of bone union, union period, and clavicle length shortening were evaluated radiologically, and clinical assessment was done by using Constant and University of California at Los Angeles (UCLA) scores. Results: All 80 cases were confirmed to have achieved bone union through radiographs with an average union period of 10.9 weeks (range: 7-18 weeks). The average clavicle length of shortening in the affected side was 1.8 mm (range: 0-17 mm). The average UCLA score and Constant score were 33.6 (range: 25-35) and 92.5 (range: 65-100), respectively. Regarding complications, four cases reported skin irritation by metal plates, and one case reported a screw insertion site fracture due to minor trauma history. Conclusions: We were able to induce successful bone union and obtain clinically satisfactory results in displaced mid-shaft fractures of the clavicle without major complications such as nonunion through treatment of internal fixation using a plate.