• Title/Summary/Keyword: Bone Mineralization

Search Result 206, Processing Time 0.033 seconds

Effects of substance P on mineralization markers and heme oxygenase-1 Expression in human immortalized periodontal ligament cells

  • Cho, You-Min;Suh, Chung-Hwan;Chun, Sang-Woo;Kim, Eun-Cheol;Kang, Kyung-Hwa
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • Substance P (SP) is known to be expressed in the nerve fibers of dental pulp and periodontal tissues. It was recently reported that SP expression increased in response to orthodontic force. In the present study, we investigated the effect of SP on expression of mineralization markers and heme oxygenase-1 (HO-1) in human immortalized periodontal ligament (IPDL) cells. Cell viability was measured using a 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) assay. The expression of mineralization markers, including alkaline phosphatase (ALP), osteonectin (ON) and bone sialoprotein (BSP), and heme oxygenase-1 (HO-1) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. SP did not significantly change human IPDL cell viability, with the exception of the 24 hour treatment group. Treatment of human IPDL cells with $10^{-10}$ to $10^{-4}M$ SP upregulated mineralization marker and HO-1 expression in a time- and concentration-dependent manner. Our results suggest that SP may modulate osteoblastic cell differentiation of human IPDL cells through a mechanism involving HO-1 expression.

In Vitro and In Vivo Bone-Forming Effect of a Low-Molecular-Weight Collagen Peptide

  • Jae Min Hwang;Mun-Hoe Lee;Yuri Kwon;Hee-Chul Chung;Do-Un Kim;Jin-Hee Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.415-424
    • /
    • 2024
  • This study reveals that low-molecular-weight collagen peptide (LMWCP) can stimulate the differentiation and the mineralization of MC3T3-E1 cells in vitro and attenuate the bone remodeling process in ovariectomized (OVX) Sprague-Dawley rats in vivo. Moreover, the assessed LMWCP increased the activity of alkaline phosphatase (ALP), synthesis of collagen, and mineralization in MC3T3-E1 cells. Additionally, mRNA levels of bone metabolism-related factors such as the collagen type I alpha 1 chain, osteocalcin (OCN), osterix, bone sialoprotein, and the Runt family-associated transcription factor 2 were increased in cells treated with 1,000 ㎍/ml of LMWCP. Furthermore, we demonstrated that critical bone morphometric parameters exhibited significant differences between the LMWCP (400 mg/kg)-receiving and vehicle-treated rat groups. Moreover, the expression of type I collagen and the activity of ALP were found to be higher in both the femur and lumbar vertebrae of OVX rats treated with LMWCP. Finally, the administration of LMWCP managed to alleviate osteogenic parameters such as the ALP activity and the levels of the bone alkaline phosphatase, the OCN, and the procollagen type 1 N-terminal propeptide in OVX rats. Thus, our findings suggest that LMWCP is a promising candidate for the development of food-based prevention strategies against osteoporosis.

EFFECTS OF bFGF AND PDGF-BB ON OSTEOBLAST DIFFERENTIATION OF BONE MARROW-DERIVED MESENCHYMAL STEM CELL IN RAT (bFGF, PDGF-BB가 백서 골수기원 간엽 줄기세포의 조직골세포 분화에 미치는 영향에 관한 연구)

  • Song, Gin-Ah;Choi, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.6
    • /
    • pp.495-505
    • /
    • 2006
  • In this study we evaluate the effects of bFGF-BB and PDGF on in vitro proliferation, differentiation and mineralization of mesenchymal stem cells (MSCs) from rat. MSCs were prepared from the bone marrow of 6 or 7-week-old male rats with a technique previously described by Maniatopoulos et al. in 1988. Lineage differentiation to osteogenesis, chondrogenesis and adipogenesis were performed. At first, we characterized the cultured cell on passage 1, 3, 5, 7 with immunocytochemical staining using CD29, 44, 34, 45, ${\alpha}$-SMA and type I collagen. And to study the effects of bFGF and PDGF-BB on proliferation, differentiation and mineralization, we seeded the expanded cell at a density of 6 $6{\times}10^3\;cells/cm^2$ to 100-mm dish for evaluation of cell proliferation and MTT assay was carried out on day 2, 4, 7, 9. We also resuspended the cells with same density $(6{\times}10^3\;cells/cm^2)$ to 24 well plates for subculture. On the following day, the attached cells were exposed to 2.5ng/ml bFGF and/or 25ng/ml PDGF-BB daily during 5 days. The osteocalcin (OC) level was assessed and mineral contents were evaluated with alizarin red S staining on subculture day 2, 7, 14, 21. We identified the mesenchymal stem cell from the bone marrow derived cells of rat through their successful multi-differentiation and stable display of its phenotype. And bFGF and PDGF-BB showed the effect that inhibited osteoblastic differentiation and mineralization mildly in above concentration at in vitro culture. This study was supported by grant 04-2004-0120 from the Seoul National University Hospital Research Fund.

BMP Expression by Human Cementum-Derived Cells in vitro

  • Ko, Hyun-Jung;Grzesik, Wojciech J
    • International Journal of Oral Biology
    • /
    • v.30 no.3
    • /
    • pp.99-103
    • /
    • 2005
  • Bone morphogenetic proteins (BMPs), members of a large group of TGF-beta family, are important molecular regulators of morphogenesis of numerous tissues and organs, including bones and teeth. Most BMPs are capable of inducing bone formation in vivo and therefore are of considerable clinical interest for regenerating mineralized tissues. Recently, we have developed a method to culture cells from human cementum (human cementum-derived cells, HCDCs). HCDCs, when attached to synthetic hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic and transplanted into immunodeficient mice, formed histologically identifiable cementum-like tissue. Since it is unclear to what extent BMPs are involved in cementogenesis, the aim of this study was to establish which BMPs are expressed by cementogenic HCDCs and whether the expression of BMPs is related to the degree of cellular differentiation in vitro. HCDCs were maintained in growth medium (DMEM/F12 supplemented with 10% FBS) until confluent (proliferation stage). Upon reaching confluence, cells were incubated in the differentiation medium (DMEM/F12 medium containing 10% FBS and 50 mg/ml ascorbic acid) for 14 days (differentiation stage). Next, HCDCs were incubated in mineralization medium (DMEM/F12, 50 mg/ml ascorbic acid, 2.5 mg/ml of ITS (insulin-transferrinselenium), 5 mM beta-glycerophosphate and $10^{-8}M$ dexamethasone) for another 14 days (mineralization stage). At the end of each differentiation stage, total RNA was isolated and evaluated for BMPs (2 through 8) expression by employing real time RT-PCR. HCDCs expressed most of BMPs examined except BMP-7 and BMP-8. Furthermore, on average, the highest levels of BMPs were expressed at the earlier differentiation stage, prior to the initiation of mineralization in vitro. These results indicate that several BMPs are expressed during cementoblastic differentiation and suggest that BMPs may be involved in the homeostasis of human cementum.

Effect of Sambucus sieboldiana Extract on the Cell Growth and Extracellular Matrix Formation in Osteoblast Cells

  • Kim, Jeongsun;Cho, Seon-Ho;Park, Jong-Tae;Yu, Sun-Kyoung;Kim, Su-Gwan;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • Sambucus sieboldiana (SS) is a member of the family Caprifoliaceae and has been recommended as a functional material because of its several bioactivities. Although numerous literatures are available on the pharmacological and biological activities, the biological activity of SS in bone regeneration process has not yet been well-defined. Therefore, in this study, the effect of SS was investigated in the proliferation and differentiation of MC3T3-E1 osteoblastic cell line. The treatment of SS did not significantly affect the cell proliferation in MC3T3-E1 cells. SS significantly accelerated the mineralization and significantly increased the expression of alkaline phosphatase (ALP) and osteocalcin (OC) mRNAs, compared to the control, in the differentiation of MC3T3-E1 cells. SS significantly accelerated the decrease of osteonectin (ON) mRNA expression as compared with the control in a time-dependent manner in the differentiation of MC3T3-E1 cells. These results suggest that the SS facilitate the osteoblast differentiation and mineralization in MC3T3-E1 osteoblastic cells. Therefore, there may be potential properties for development and clinical application of bone regeneration materials.

Osteocalcin Expression and Mineralization in Developing Tooth of Xenopus laevis

  • Park, Jung Hoe;Kwon, Ki-Tak;Park, Byung Keon;Lee, Young-Hoon
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Osteocalcin (OC) is the most abundant noncollagenous protein of extracellular matrix in the bone. In an OC deficient mouse, bone formation rates are increased in cancellous and cortical bones. OC is known as a negative regulator of mineral apposition. OC is also expressed in the tooth of the rat, bovine, and human. However, little is known about OC during tooth development in Xenopus. The purpose of this study is to compare the expression of OC with mineralization in the developing tooth of Xenopus, by using von Kossa staining and in situ hybridization. At stage 56, the developmental stage of tooth germ corresponds to the cap stage, and an acellular zone was apparent between the dental papilla and the enamel organ. From stage 57, calcium deposition was revealed by von Kossa staining prior to OC expression, and the differentiated odontoblasts forming predentin were located at adjoining predentin. At stage 58, OC transcripts were detected in the differentiated odontoblasts. At stage 66, OC mRNA was expressed in the odontoblasts, which was aligned in a single layer at the periphery of the pulp. These findings suggest that OC may play a role in mineralization and odontogenesis of tooth development in Xenopus.

Yam (Dioscorea batatas) Root and Bark Extracts Stimulate Osteoblast Mineralization by Increasing Ca and P Accumulation and Alkaline Phosphatase Activity

  • Kim, Suji;Shin, Mee-Young;Son, Kun-Ho;Sohn, Ho-Yong;Lim, Jae-Hwan;Lee, Jong-Hwa;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.194-203
    • /
    • 2014
  • Yam (Dioscorea batatas) is widely consumed as functional food for health promotion mainly in East Asia countries. We assessed whether yam root (tuber) or bark (peel) extracts stimulated the activity of osteoblasts for osteogenesis. MC3T3-E1 cells (mouse osteoblasts) were treated with yam root extracts (water or methanol) (study I) or bark extracts (water or hexane) (study II) within $0{\sim}10{\mu}g/mL$ during the periods of osteoblast proliferation (5~10 day), matrix maturation (11~15 day) and mineralization (16~20 day) as appropriate. In study I, both yam root water and methanol extracts increased cell proliferation as concentration-dependent manner. Cellular collagen synthesis and alkaline phosphatase (ALP) activity, both the indicators of bone matrix protein and inorganic phosphate production for calcification respectively, were also increased by yam root water and methanol extract. Osteoblast calcification as cell matrix Ca and P accumulation was also increased by the addition of yam root extracts. In study II, yam bark extracts (water and hexane) increased osteoblast proliferation and differentiation, as collagen synthesis and ALP activity and osteoblast matrix Ca and P deposition. The study results suggested that both yam root and bark extracts stimulate osteogenic function in osteoblasts by stimulating bone matrix maturation by increasing collagen synthesis, ALP activity, and matrix mineralization.

PROBLEMS IN OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW STROMAL CELLS (쥐의 골수로부터 추출한 줄기세포를 이용한 조골세포로의 분화 유도과정에서 나타난 문제점에 관한 분석 연구)

  • Kim, In-Sook;Cho, Tae-Hyung;Zhang, Yu-Lian;Lee, Kyu-Back;Park, Yong-Doo;Rho, In-Sub;Weber, F.;Lee, Jong-Ho;Kim, Myung-Jin;Hwang, Soon-Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This study was aimed to characterize osteogenic potential of rat bone marrow stromal cells (BMSC) isolated with standard flushing method and investigate the plasticity of transdifferentiation between osteoblastic and adipocytic lineage of cultured BMSC. Unlike aspiration method in human, rat bone marrow was extracted by means of irrigation with culture media that elevates the possibility of co-extraction of committed osteoprogenitor, or preosteoblast or other progenitor cells of several types present inside bone marrow. The cultured stromal cells showed high ALP activity which is representative marker of osteoblast without any treatment. Osteogenic inducers such as Dex and BMP-2 were examined for the evaluation of their effect on osteogenic and adipocytic differentiation of stromal cells, because they function as osteoinductive agent in stromal cells, but simultaneously induce adipogenic differentiation. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity or mRNA expression of osteoblast markers such as osteopontin, bone sialoprotein, collagen type I and CbfaI, and in vitro matrix mineralization by von Kossa staining. Oil red staining method was used to detect adipocyte and adipocytic marker, aP2 and $PPAR{\gamma}2$ expression was examined using RT-PCR. It can be supposed that irrigation procedure resulted in high portion of already differentiation-committed osteoprogenitor cell showing elevated ALP activity and strong mineralization only under the supplement of $100{\mu}M$ ascorbic 2-phosphate and 10mM ${\beta}$-glycerophosphate without any treatment of osteogenic inducers such as Dex and BMP-2. Dex and BMP-2 seemed to transdifferentiate osteoprogenitor cells having high ALP activity into adipocytes temporarily, but continuous treatment redifferentiated into osteoblast and developed in vitro matrix mineralization. This property must be considered either in tissue engineering for bone regeneration, or in research of characterization of osteogenic differentiation, with rat BMSC isolated by the standard irrigation method.

A Bone-like Small Intestinal Wooden Foreign Body in a Dog (개의 소장에서 관찰된 뼈와 같은 형태의 나무 이물)

  • Jeoung, Seok-Young;Kim, Doo;Ahn, So-Jeo;Park, In-Chul;Woo, Heung-Myong;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.23 no.3
    • /
    • pp.375-379
    • /
    • 2006
  • Detection of wooden foreign body represents a clinical challenge. Wood is typically radiolucent, so wooden foreign bodies are generally cannot be seen on survey radiography. Failure to locate and remove foreign bodies can lead the patient to the long-term secondary inflammatory reactions or infections. The dog described in the present report ingested a wooden foreign body(cotton swab stick) a year ago. The foreign body remained in the intestinal tracts which were attached to each other due to the prior abdominal operation. The wooden piece in the intestine functioned as a nidus and inorganic matters were gathered forming calculus on the outer layer of foreign body. In the radiograph, the foreign body appeared to be a chicken bone which of it's inner area was more radiolucent than the outer layer. Because the wooden foreign bodies that have remained for long time in the intestinal tract can be seen like a bone by mineralization, the diagnosis of the wooden foreign bodies should be done prudently.