• Title/Summary/Keyword: Bonding surface

Search Result 1,560, Processing Time 0.024 seconds

REGIONAL MICRO-SHEAR BOND STRENGTH TO DENTIN:EFFECTS OF DENTINAL HARDNESS, POSITION, AND REMAINING DENTIN THICKNESS (상아질의 경도, 위치 및 잔존 상아질 후경이 상아질에 대한 부위별 미세 전단결합강도에 미치는 영향)

  • Hwang, Seon-Seong;Im, Mi-Kyung;Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.401-412
    • /
    • 1998
  • The aim of this study was to measure the regional micro-shear bond strength of dentin bonding agents to dentin, and to investigate the relationship between the micro-shear bond strength and two dentinal characteristics ; Vickers hardness and remaining dentin thickness. Twenty-four freshly extracted, noncarious human molars were selected for this study. The materials tested in this study consisted of two commercially available dentin bonding agents (MAC-BOND, ONE-STEP) and two restorative light-cured composite resins (AELITEFIL, Z100). The occlusal or side surface of tooth crown was sectioned to expose dentin, and the exposed surface was finally polished with # 600 sandpaper. Four groups of application methods were used combining the filling materials and the dentin bonding agents. The composite resin-attached tooth specimens were embeded in a cold cure acrylic resin, and were cut with a low speed diamond saw to the dimension of 1mm $\times$ 1mm. Nine specimens were obtained from each tooth. The cut specimens were divided into three groups depending on the position of the dentin bonding surface. The micro-shear bond strength, remaining dentin thickness, and dentinal hardness were measured. Experimental results were then statistically analyzed with ANOVA. t-test, Scheffe test, and regression analysis. From this experiment, the following results were obtained : 1. In the case of occlusal surface bonding, the pooled micro-shear bond strength of ONST-AELIT group (16.62 MPa) was significantly higher than that of MACB-AELIT group (9.91 MPa) (p<0.05). However, there was no significant difference in the micro-shear bond strength depending on the dentin position (p>0.05). 2. In the case of side surface bonding of crown, the pooled micro-shear bond strength of four different bonding groups was not significantly different among each other (p>0.05). However, in three of the test groups (ONST-AELIT, MACB-Z100, ONST-Z100), the micro-shear bond strength to the lower 1/3(III) position was significantly lower than that to middle 1/3(II) position of surface (p<0.05). 3. In the ONST-AELIT bonding group, the pooled micro-shear bond strength to the occlusal surface was significantly lower than that to the side surface of crown (p<0.05). 4. There was no significant correlation between the micro-shear bond strength and dentin hardness / remaining dentin thickness (p>0.05).

  • PDF

EFFECT OF CUPRIC AND FERRIC IONS ON BONDING OF MMA/TBBO RESIN TO DENTIN (동 및 철이온이 MMA/TBBO레진의 상아질 접착에 미치는 영향)

  • Park, Jin-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.423-430
    • /
    • 1993
  • The purpose of this study was to investigate the effect of ferric and ferric ions contained in phosphoric acid solution as a pretreatment solution on bonding of MMA/TBBO resin to dentin. Each of 1 % and 3 % ferric chloride. cupric chloride. cupric sulfate. and cupric nitrate was mixed into 10% phosphoric acid solution and pretreated dentin surface of bovine anterior teeth for 30 seconds followed- by water rinse and dry. Tensile bond strength was determined after bonding of pretreated dentin with MMA/TBBO resin by use of brush-on ;technique and storing for 24 hours in 3it distilled water. The amount of cupric ions adsorbed on pretreated dentin surface was detected by Wave-Dispersion X-ray microanalyzer for different groups of each pretreatment solution containing cupric salts. The pretreatment with cupric ions contained in 10% phosphoric acid solution was effective to increase bonding strength of MMA/TBBO resin to dentin but not in case of ferric ions. The pretreatment with 3 % cupric chloride and cupric nitrate both enhanced significant increase in bonding strength compared to the control group of 10% phosphoric acid solution(p<0.05). Cupric ions measured in pretreated dentin surface was higher in 3 % cupric chloride group than in 1% cupric chloride group, but couldn't find distinct relationship from the results of this experiment between the amount of adsorbed cupric ions according to the kind of cupric salts and the bonding strength value.

  • PDF

Inter-row Adsorption Configuration and Stability of Threonine Adsorbed on the Ge(100) Surfaces

  • Lee, Myungjin;Park, Youngchan;Jeong, Hyuk;Lee, Hangil
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1055-1060
    • /
    • 2013
  • The adsorption structures of threonine on the Ge(100) surface were investigated using core-level photoemission spectroscopy (CLPES) in conjunction with density functional theory (DFT) calculations. CLPES measurements were performed to identify the experimentally preferred adsorption structure. The preferred structure indicated the relative reactivities of the carboxyl and hydroxymethyl groups as electron donors to the Ge(100) surface during adsorption. The core-level C 1s, N 1s, and O 1s CLPES spectra indicated that the carboxyl oxygen competed more strongly with the hydroxymethyl oxygen during the adsorption reaction. Three among six possible adsorption structures were identified as energetically favorable using DFT calculation methods that considered the inter- and intra-bonding configurations upon adsorption onto the Ge(100) surface. These structures were O-H dissociated N dative inter bonding, O-H dissociated N dative intra bonding, O-H dissociation bonding. One of the adsorption structures: O-H dissociated N dative inter bonding was predicted to be stable in light of the transition state energies. We thus confirmed that the most favorable adsorption structure is the O-H dissociated N dative-inter bonding structure using CLPES and DFT calculation.

Observation of Shear Bonding Strength by Compositional Change and Firing Steps of the Ni-Cr Alloy for Porcelain Fused Metal Crown (금속-도재관용 Ni-Cr합금의 조성변화와 소성단계에 따른 전단결합강도)

  • Cho, Yong-Wan;Hong, Min-Ho;Kim, Won-Young;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2013
  • Purpose: This study was observation shear bonding strength by compositional change and firing step of a Ni-Cr alloy for porcelain fused metal crown. The aim of study was to suggest the material for firing step of Ni71-Cr14 alloy to development of alloy for porcelain fused to metal crown. Methods: The test was on the two kinds of Ni-Cr alloy specimens. The surfaces of two alloys were analyzed by EDX in order to observe oxide characteristic. And the shear test was performed by MTS. Results: The surface property and oxide characteristic analysis of oxide layer, weight percentage of Element O within $Ni_{71}Cr_{14}$ alloy measured 23.32wt%, and $Ni_{59}Cr_{24}$ alloy was measured 23.03wt%. And the maximum shear bonding strength was measured 58.02MPa between $Ni_{59}Cr_{24}$ alloy and vintage halo(H4 group). Conclusion: The surface property and oxide characteristic three kind of Ni-Cr alloy was similar. and shear bonding strength showed the highest bonding strength in H4 specimens.

Microstructure Evolution and Mechanical Properties of Wire-Brushed Surface and Roll-Bonded Interface of Aluminum Sheets (와이어 브러싱한 알루미늄 판재 표면 및 압연접합 계면의 미세조직 및 기계적 성질)

  • Kim, Su-Hyeon;Kim, Hyoung-Wook;Kang, Joo-Hee;Euh, Kwangjun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.380-387
    • /
    • 2011
  • Wire brushing, which is a typical surface preparation method for roll bonding, has recently been highlighted as a potentially effective method for surface nanocrystallization. In the present study, the microstructure evolution and hardness of the wire-brushed surface and roll-bonded interface of a 1050 aluminum sheet were investigated. Wire brushing formed protruded layers with a nanocrystalline structure and extremely high surface hardness. After roll bonding, the protruded layers remained as hard layers at the interface. Due to their hardness and brittleness the interface hard layers, can affect the interface bonding properties and also play an important role determining the mechanical properties of multi-layered clad sheets.

Melting induced diffusion bonding of Rene 80 superalloys using boron doping method (Ren380 超合金의 보론 塗布法을 이용한 液化誘導擴散接合法의 硏究)

  • 정재필;강춘식;이보영
    • Journal of Welding and Joining
    • /
    • v.9 no.3
    • /
    • pp.26-33
    • /
    • 1991
  • As it takes very long time for the Transient Liquid Phase(TLP) bonding, we tried to reduce the bonding time by changing insert material for the high diffusivity element. On this study boron powder was doped as a insert material on the bonding surface of Rene 80 superalloy, and diffusion treated at 1150.deg.C under vacuum. On this method differently from the TLP bonding the insert material was not melted during bonding but only the base metal reacted with the boron was inducedly melted. Therefore, as this bonding mechanism is different from the existing ones, it is suggested as a Melting Induced Diffusion Bonding. When this process was used for the diffusion bonding, the bonding time including homogenization decreased greatly compared to the conventional TLP bonding.

  • PDF

A STUDY ON THE EFFECT OF DENTIN BONDING AGENTS APPLIED OVER ENAMEL ABOUT THE BOND STRENGTH OF COMPOSITE RESIN (접착강화제가 치아경조직과의 접착강도 변화에 미치는 영향에 관한 연구)

  • Choi, Woong-Dae;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 1995
  • The purpose of this study was to investigate the effect of dentin bonding agents on the bond strength of composite resin restorations in case of applying the dentin bonding agents to acid etched enamel surfaces. Freshly extracted 364 bovine anterior teeth were selected as a adherents. 320 enamel specimens were divided into two groups(unetched group (1) and etched group (2) for testing the shear bond strength, 40 specimens were used for the hardness testing, and 4 specimens of rest were to observe the resin-tag formation into etched enamel surfaces. All surfaces of enamel specimens were polished with 320~1500 SiC paper under continuous running water. In Group (1), 100 enamel specimens were polished and unetched. 220 polished enamel specimens in Group (2) were etched with 37 % phosphoric acid solution for 60 seconds, washed with water for 20 seconds, and dried with a light air pressure for 60 seconds. Three kinds of dentin bonding agents(Gluma, Prisma, Scotchbond 2) were evaluated the effect on the bond strength to conditioned enamel surfaces. Shear bond strengths were measured on the three cases such as a coating of primer only, a coating of sealer only, and a sequential coating of primer and sealer to acid etched enamel surfaces were compared with the bond strengths measured by the coating of enamel bonding agent followed by the bonding of composite resin (Photo clearfil bright, Kuraray, Japan) to unetched and acid etched enamel surfaces. In addition, the hardness tested on the adhesive fractured surface between composite resin enamel as a mean of evaluation of a factor whether the mechanical bond strengths were affected and the penetration of dentin bonding agents into etched enamel surfaces was also observed. Bond strengths were measured using the method of shear bond strength by a universal testing machine (Instron-4467, USA), statistical test were applied to the results using a one way analysis variance(ANOVA), and hardness was measured by the Vicker's Hardness Tester(MHT-i, Matsuzawa, Japan) and the penetration of the resins were observed by the SEM (Hitachi, S-2300, Japan). The following conclusions were drawn; 1. Enamel bonding agent showed to affect the improvement of bond strength of composite resin to enamel surface both unetched and etched. 2. Dentin bonding agents could be resulted in increase of bond strength to unetched enamel surface, but there were no statistical significances. 3. Bond strengths to etched enamel surface were significantly decreased with a coating of dentin primer only. 4. Coating of sealer only and coating of primer and sealer noticed the similar bond strengths of composite resin to etched enamel using the enamel bonding agents. 5. The applying method proved to be more effective than the kinds of dentin bonding agents on the bond strength of composite resin to etched enamel than the kind of dentin. 6. Vicker's hardness numbers of dentin bonding agents were lower than that of composite resin, but the degree of penetration of dentin bonding agents into etched enamel surfaces was excellent.

  • PDF

Effects of Wafer Cleaning and Heat Treatment in Glass/Silicon Wafer Direct Bonding (유리/실리콘 기판 직접 접합에서의 세정과 열처리 효과)

  • 민홍석;주영창;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.479-485
    • /
    • 2002
  • We have investigated the effects of various wafers cleaning on glass/Si bonding using 4 inch Pyrex glass wafers and 4 inch silicon wafers. The various wafer cleaning methods were examined; SPM(sulfuric-peroxide mixture, $H_2SO_4:H_2O_2$ = 4 : 1, $120^{\circ}C$), RCA(company name, $NH_4OH:H_2O_2:H_2O$ = 1 : 1 : 5, $80^{\circ}C$), and combinations of those. The best room temperature bonding result was achieved when wafers were cleaned by SPM followed by RCA cleaning. The minimum increase in surface roughness measured by AFM(atomic force microscope) confirmed such results. During successive heat treatments, the bonding strength was improved with increased annealing temperatures up to $400^{\circ}C$, but debonding was observed at $450^{\circ}C$. The difference in thermal expansion coefficients between glass and Si wafer led debonding. When annealed at fixed temperatures(300 and $400^{\circ}C$), bonding strength was enhanced until 28 hours, but then decreased for further anneal. To find the cause of decrease in bonding strength in excessively long annealing time, the ion distribution at Si surface was investigated using SIMS(secondary ion mass spectrometry). tons such as sodium, which had been existed only in glass before annealing, were found at Si surface for long annealed samples. Decrease in bonding strength can be caused by the diffused sodium ions to pass the glass/si interface. Therefore, maximum bonding strength can be achieved when the cleaning procedure and the ion concentrations at interface are optimized in glass/Si wafer direct bonding.

EFFECT OF BENZALKONIUM CHLORIDE ON DENTIN BONDING WITH NTG-GMA/BPDM AND DSDM SYSTEM (Benzalkonium Chloride가 NTG-GMA/BPDM계 및 DSDM계 상아질접착제의 접착성능에 미치는 영향)

  • Shin, Il;Park, Jin-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.699-720
    • /
    • 1995
  • This study was conducted to evaluate the effect of benzalkonium chloride solution as a wetting agent instead of water on dentin bonding with NTG-GMA/BPDM system (All-bond 2, Bisco.) and DSDM system (Aelitebond, Bisco.). Benzalkonium chloride solution is a chemical disinfectant widely used in medical and dental clinics for preoperative preparation of skin and mucosa due to its strong effect of cationic surface active detergent. Eighty freshly extracted bovine lower incisor were grinded labially to expose flat dentin surface, and then were acid-etched with 10 % phosphoric acid for 15 second, water-rinsed, and dried for 10 second with air syringe. The specimens were randomly divided into 8 groups of 10 teeth. The specimens of control group were remoistured with water and the specimens of experimental groups were remoistured with 0.1 %, 0.5 %, and 1.0 % benzalkonium chloride solution respectively. And then, the Aelitefil composite resin was bonded to the pretreated surface of the specimens by use of All-bond 2 dentin bonding system or Aelitebond dentin bonding system in equal number of the specimens. The bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, then the tensile bond strength was measured, the mode of failure was observed, the fractured dentin surface were examined under scanning electron microscopy, and FT-IR spectroscopy was taken for the purpose of investigating the changes of the dentin surface pretreated with benzal konium chloride solution followed by each primer of the dentin bonding systems. The results were as follows : In the group of bonding with NTG-GMA/BPDM dentin bonding agent(All-bond 2), higher tensile bond strength was only seen in the experimental group remoistured with 0.1 % benzal konium chloride solution than that in water-remoistured control group(p<0.05). In the group of bonding with DSDM dentin bonding agent (Aelitebond), no significant differences were seen between the control and each one of the experimental group(p<0.05). Higher tensile bond strength were seen in NTG-GMAIBPDM dentin bonding agent group than in DSDM dentin bonding agent group regardless of remoistur ization with benzal konium chloride solution. On the examination of failure mode, cohesive and mixed failure were predominantly seen in the group of bonding with NTG-GMAIBPDM dentin bonding agent, while adhesive failure was predominantly seen in the group of bonding with DSDM dentin bonding agent. On SEM examination of fractured surfaces, no differences of findings of primed dentin surface between the groups with and without remoisturization with benzal konium chloride solution. FT-IR spectroscopy taken from the control and the experimental group reve::.led that some higher absorbance derived from the primers binding to dentin surface was seen at the group pretreated with 0.1 % benzal konium chloride solution than at the control group of remoisturizing with water.

  • PDF

A STUDY ON THE DENTIN BONDING OF ONE-STEP BONDING AGENT (ONE-STEP 접착제의 상아질 접착에 관한 연구)

  • Cho, Young-Gon;Park, Sung-Taek;Park, Kwang-Soo
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.468-476
    • /
    • 1998
  • The purpose of this study was to observe the morphologic change of dentinal surface, adhesion in interface between dentin and bonding agents, and penetration pattern of resin tags into dentinal tubles according to bonding procedure of ONE-STEP universal adhesive system. Ten extracted human molars were mounted in dental stone and sectioned to expose mid-coronal occlusal dentin and again sectioned tooth crown apically. Specimens were randomly assigned to three groups for dentin conditioning with 32% phoshoric acid, two coats of bonding agents after dentin conditioning, and bond of composite resin. The surfaces of dentin were treated with etch ant and applied bonding agent, and bonded composite resin according to the directions of manufacturer. Specimens which were boned composite were sectioned longitudinally for observing interfaces between resin and dentin. Two of specimens which were sectioned longitudinally were immersed in 6 N HCL for 30 seconds and 1% NaOCL for 12 hours to partially demineralize and deproteinize the dentin substrate. Each specimen was mounted on a brass stub, sputter-coated with gold and observed under SEM. The result were as follows : 1. On the dentinal surface which was conditioned with 32% phosphoric acid. the smear layer was completely removed. orifices of dentinal tubules were opened 3-$5{\mu}m$ wide. and dentinal surface was irregular. 2. On the dentinal surface which was applied ONE-STEP. bonding agent. resin particles were observed on the orifices of dentinal tubules and intertubular dentin. 3. There were close adaptation between dentin and resin and were the pattern which composite invaded into dentin. 4. 1-$3{\mu}m$-wide hybrid layer was visible in the interface between dentin and resin. 5. Long and funnel shaped resin tags were observed in demineralized specimens. and the surfaces of tags were rough.

  • PDF