• Title/Summary/Keyword: Bonding surface

Search Result 1,560, Processing Time 0.062 seconds

Effect of Deposition Temperature on the Characteristics of Low Dielectric Fluorinated Amorphous Carbon Thin Films (증착온도가 저유전 a-C:F 박막의 특성에 미치는 영향)

  • Park, Jeong-Won;Yang, Sung-Hoon;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1211-1215
    • /
    • 1999
  • Fluorinated amorphous carbon (a-C:F) films were prepared by an electron cyclotron resonance chemical vapor deposition (ECRCVD) system using a gas mixture of $C_2F_6$ and $CH_4$ over a range of deposition temperature (room temperature ~ 300$^{\circ}C$). 500$^{\AA}C$ thick DLC films were pre-deposited on Si substrate to improve the strength between substrate and a-C:F film. The chemical bonding structure, chemical composition, surface roughness and dielectric constant of a-C:F films deposited by varying the deposition temperature were studied with a variety of techniques, such as Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), atomic force microscopy (AFM) and capacitance-voltage(C-V) measurement. Both deposition rate and fluorine content decreased linearly with increasing deposition temperature. As the deposition temperature increased from room temperature to 300$^{\circ}C$, the fluorine concentration decreased from 53.9at.% down to 41.0at.%. The dielectric constant increased from 2.45 to 2.71 with increasing the deposition temperature from room temperature to 300$^{\circ}C$. The film shrinkage was reduced with increasing deposition temperature. This results ascribed by the increased crosslinking in the films at the higher deposition temperature.

  • PDF

The Errect of Interfacial Structure on the Bonding Strength in ${Al}_{2}{O}_{3}$/304 Joint (${Al}_{2}{O}_{3}$/304스트레인레스강 접합체 계면구조가 접합강도에 미치는 영향)

  • Kim, Byeong-Mu;Gang, Jeong-Yun;Lee, Sang-Rae
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.282-291
    • /
    • 1993
  • Joining ${Al}_{2}{O}_{3}$ and STS 304 stainless steel by active metal brazing method with using CuI Owt % Ti and Cu -7 .5wt % Zr insert metal, their interfaces were analyzed and strength of the joint brazed with Cu-7.5wt % Zr insert metal also investigated with shear strength testing method. In brazing with Cu-lOwt% Ti insert metal, the single reaction layer was formed by the reaction with Ti and ${Al}_{2}{O}_{3}$ at the interface between ${Al}_{2}{O}_{3}$ and insert metal, but the double reaction layer was found in brazing with Cu-7.5wt % Zr insert metal because of the difference of their wettability on the surface of ${Al}_{2}{O}_{3}$. Fracture shear strength about 86MPa was obtained from ${Al}_{2}{O}_{3}$/Cu-7.5wt% Zr/STS 304 stainless steel joint and reasonable strength of the joints is attributed to the formation of double reaction layer at the interface.

  • PDF

Effect of Silane Coupling Agent on Adhesion Properties between Hydrophobic UV-curable Urethane Acrylate and Acrylic PSA (소수성 UV 경화형 우레탄 아크릴레이트와 아크릴 점착제 사이의 계면 부착력 향상을 위한 에폭시 실란의 영향)

  • Noh, Jieun;Byeon, Minseon;Cho, Tae Yeun;Ham, Dong Seok;Cho, Seong-Keun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.230-236
    • /
    • 2020
  • In this study, an adhesive tape with water and impact resistance for mobile devices was developed using a UV-curable urethane acrylate based polymer as a substrate. The substrate fabricated by UV-curable materials shows hydrophobicity and poor wettability, which significantly deteriorates the interface-adhesions between the substrate and acrylic adhesive. In order to improve the interface adhesion, 3-glycidoxy-propyl trimethoxysilane (GPTMS), a silane coupling agent having epoxy functional groups, was selected and incorporated into UV-curable urethane acrylate based polymer resins in various contents. The changes of the chemical composition according to the contents of GPTMS was studied with Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) to know the surface bonding properties. Also mechanical properties of the substrate were characterized by tensile strength, gel fraction and water contact angle measurements. The peel strengths at 180° and 90° were measured to compare the adhesion between the substrate and adhesive according to the silane coupling agent contents. The mechanical strength of the urethane acrylate adhesive tape decreased as the silane coupling agent increased, but the adhesion between the substrate and adhesives increased remarkably at an appropriate content of 0.5~1 wt%.

A Comparison Analysis on the Efficiency of Solar Cells of Shingled Structure with Various ECA Materials (다양한 ECA 소재를 활용한 shingled 구조의 태양전지 효율 비교 분석)

  • Jang, Jae Joon;Park, Jeong Eun;Kim, Dong Sik;Choi, Won Seok;Lim, Donggun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Modules using 6 inch cells have problems with loss due to empty space between cells. To solve this problem made by shingled structure which can generate more power by utilizing empty space by increasing the voltage level than modules made in 6inch cell. Thus, in this paper, the c-Si cutting cells were produced using nanosecond green laser, and then the ECA was sprayed and cured to perform cutting cell bonding. Three types of ECA materials (B1, B2, B3) with Ag as the main component were used, and experimental conditions varied from 5 to 120 seconds of curing time, 130 to $210^{\circ}C$ of curing temperature, and 1 to 3 of curing numbers. As a results of experiments varying curing time, B1 showed efficiency 19.88% in condition of 60 seconds, B2 showed efficiency 20.15% in 90 seconds, and B3 showed efficiency 20.27% in 60 seconds. In addition, experiments with varying curing temperature, It was confirmed highest efficiency that 20.04% in condition of $170^{\circ}C$ with B1, 20.15% in condition of $150^{\circ}C$ with B2, 20.27% in condition of $150^{\circ}C$ with B3. These are because the Ag particles are densely formed on the surface to make the conduction path. After optimizing the conditions of temperature and curing time, the secondary-tertiary curing experiments were carried out. as the structural analysis, conditions of secondary-tertiary curing showed cracks that due to damp heat aging. As a result, it was found that the ECA B3 had the highest efficiency of 20.27% in condition of 60 seconds of curing time, $150^{\circ}C$ of curing temperature, and single number of curing, and that it was suitable for the manufacture of Solar cell of shingled structure rather than ECA B1 and B2 materials.

Anthocyanins from Hibiscus syriacus L. Attenuate LPS-Induced Inflammation by Inhibiting the TLR4-Mediated NF-κB Signaling Pathway

  • Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Molagoda, Ilandarage Menu Neelaka;Lee, Kyoung Tae;Choi, Yung Hyun;Kang, Chang-Hee;Jeong, Jin-Woo;Kim, Gi-Young
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.92-92
    • /
    • 2019
  • Excessive or chronic inflammation contributes to the pathogenesis of many inflammatory diseases such as sepsis, rheumatoid arthritis, and ulcerative colitis. Hibiscus syriacus L. has been used as a medicinal plant in many Asian countries, even though its anti-inflammatory activity has been unclear. Therefore, we investigated the anti-inflammatory effect of anthocyanin fractions from the H. syriacus L. varieties Pulsae (PS) on the lipopolysaccharide (LPS)-induced expression of proinflammatory mediators and cytokines in RAW264.7 macrophages. PS suppressed LPS-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) secretion concomitant with downregulation of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, PS inhibited the production of proinflammatory cytokines such as tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), and IL-12 in LPS-stimulated RAW264.7 macrophages. Further study showed that PS significantly decreased LPS-induced nuclear translocation of the nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) subunits, p65 and p50. Molecular docking data showed that many anthocyanins from PS fit into the hydrophobic pocket of MD2 and bound to Toll-like receptor 4 (TLR4), indicating that PS inhibits the TLR4-MD2-mediated inflammatory signaling pathway. Especially, apigenin-7-O-glucoside most powerfully bound to MD2 and TLR4 through LYS122, LYS122, and SER127 at a distance of $2.205{\AA}$, $3.098{\AA}$, and $2.844{\AA}$ and SER441 at a distance of $2.873{\AA}$ (docking score: -8.4) through hydrogen bonding, respectively. Additionally, PS inhibited LPS-induced TLR4 dimerization/expression on the cell surface, which consequently decreased MyD88 recruitment and IRAK4 phosphorylation. PS completely blocked LPS-mediated mortality in zebrafish larvae by diminishing the recruitment of neutrophil and macrophages accompanied by low levels of proinflammatory cytokines. Taken together, our results indicate that PS attenuates LPS-mediated inflammation in both in vitro and in vivo by blocking the TLR4/MD2-MyD88/IRAK4-$NF-{\kappa}B$ axis. Therefore, PS might be used as a novel modulatory candidate for effective treatment of LPS-mediated inflammatory diseases.

  • PDF

Effect of applying adhesive after enamel etching on the shear bond strength of orthodontic brackets using light curing resin cements (광중합형 레진시멘트를 사용한 치열교정용 브라켓 접착 시 접착제 사용 유무가 산 부식한 법랑질의 전단접착강도에 미치는 영향)

  • Kim, Eung-Hyun;Kim, Jin-Woo;Park, Se-Hee;Lee, Yoon;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • Purpose: The purpose of this study is to compare the shear bond strength of resin cement for orthodontic brackets without applying an adhesive primer, to the case of applying an adhesive primer. Materials and Methods: The specimens were divided into three experimental groups, Transbond XT, GC Ortho Connect and Orthomite LC, and the enamel surface was divided into two sections, one with 37% phosphoric acid and the other with 37% phosphoric acid and an adhesive primer or universal adhesive. Each of three types of cement was applied to orthodontic bracket, and after bonding, the shear bond strength was measured. Results: Transbond XT and Orthomite LC significantly increased shear bond strength when orthodontic brackets were bonded after applying an adhesive primer and universal adhesive, respectively. Conclusion: It is expected that application of an adhesive primer or universal adhesive after acid etching will improve shear bond strength of orthodontic brackets in Transbond XT and Orthomite LC.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

Synthesis and Properties of Photo-curable Biomass-based Urethane Acrylate Oligomers (광경화형 바이오매스계 우레탄 아크릴레이트 올리고머의 합성 및 물성 연구)

  • Se-Jin Kim;Lan-Ji Baek;Byungjin Koo;Jungin Choi;JungMi Cheon;Jae-Hwan Chun
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.26-35
    • /
    • 2023
  • Generally, solvent-type coatings generate a large amount of volatile organic chemicals(VOC), which are carcinogenic substances, in the manufacturing process, and their use is regulated due to environmental problems. There is also the problem of resource depletion due to limited fossil fuels. Therefore, in this study, UV-curable urethane acrylate oligomers were synthesized with different contents of isosorbide, which is a biomass material, and proceeded to evaluate the physical properties of coatings. As the isosorbide contents increased, the viscosity, glass transition temperature, tensile strength, stain resistance, and pencil hardness increased, but elongation and flexibility decreased, and BOI-3 showed the best adhesion. The isosorbide content of the oligomer fixed at 20%, UV-curable urethane acrylate oligomer was synthesized according to the content ratio of polycaprolactone diol(PCL) and Ecoprol H1000(Ecoprol). As the PCL/Ecoprol content ratio increased, the glass transition temperature, elongation, and flexibility increased, but the tensile strength and pencil hardness decreased. It was confirmed that the adhesion and stain resistance increased by improving the surface bonding strength of PCL. All films of oligomers synthesized were transparent without discoloration.

In Vitro Study on the Bond Strength Between 3D-Printed Resin and Resin Cement for Pediatric Crown Restoration (소아용 크라운 수복을 위한 3D 프린팅 레진과 레진 시멘트 간의 접착 강도 평가)

  • So Yung Kim;Yoosoek Shin;Ik-Hwan Kim;Je Seon Song
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.1
    • /
    • pp.104-112
    • /
    • 2023
  • A 3D-printed resin crown is a novel option for esthetic crown restoration for primary teeth, which are typically bonded with resin cement. The purpose of this study was to evaluate the bonding ability of a 3D printing resin and compare it with other indirect resin materials for crown fabrication. The shear bond strengths of two 3D printing resin materials, Graphy (GP) and NextDent (NXT), and two indirect resin materials, VIPI Block (VIPI) and MAZIC Duro (MZ), were compared in the study. For all materials, the shear bond strength at the interface between the surface of the resin material and resin cement was measured. The mean shear bond strength values of GP, NXT, MZ, and VIPI were 23.29 ± 3.88, 26.14 ± 4.67, 25.41 ± 4.03, and 18.79 ± 4.26 MPa, respectively. There was no significant difference among the SBSs of GP, NXT and MZ except for VIPI. The result of this study indicates that the 3D printing resin meets the essential requirement for clinical use by showing clinically adequate bond strength.

The Verification Of Green Soil Material Characteristics For Slope Protection (사면 보호를 위한 녹생토 재료 특성 검증)

  • Lee, Byung-Jae;Heo, Hyung-Seok;Noh, Jae-Ho;Jang, Young-Il
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.681-692
    • /
    • 2017
  • In recent years, large-scale construction projects such as road pavement construction and new city construction have been carried out nationwide with by the expansion of social overhead facilities and base on the economic development planning, resulting in a rapid increase in artificial slope damage. The existing vegetation-based re-installation method of the slope surface greening method reveals various problems such as lack of bonding force, drying, and lack of organic matter. In this study, research was carried out using vegetation-based material and environmentally friendly soil additives, were are used in combination with natural humus, Bark compost, coco peat, and vermiculite. Uniaxial compressive strength was measured according to the mixing ratio of soil additives and the strength was analyzed. Experiments were carried out on the characteristics of the soil material to gauge the slope protection properties by using the soil compaction test method wherein the soil and the soil additive materials are mixed in relation to the soil height, the number of compaction, the compaction method (layer) and the curing condition. As a result of the experiment, excellent strength performance was demonstrated in soil additives using gypsum cement, and it satisfied vegetation growth standards by using performance enhancer and pH regulator. It was confirmed that the strength increases with the mixing of soil and soil additive, and the stability of slope protection can be improved.