• 제목/요약/키워드: Bonded scarf joint

검색결과 12건 처리시간 0.026초

EFFECTS OF INTERFACE CRACKS EMANATING FROM A CIRCULAR HOLE ON STRESS INTENSITY FACTORS IN BONDED DISSIMILAR MATERIALS

  • CHUNG N.-Y.;SONG C.-H
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.293-303
    • /
    • 2005
  • Bonded dissimilar materials are being increasingly used in automobiles, aircraft, rolling stocks, electronic devices and engineering structures. Bonded dissimilar materials have several material advantages over homogeneous materials such as high strength, high reliability, light weight and vibration reduction. Due to their increased use it is necessary to understand how these materials behave under stress conditions. One important area is the analysis of the stress intensity factors for interface cracks emanating from circular holes in bonded dissimilar materials. In this study, the bonded scarf joint is selected for analysis using a model which has comprehensive mixed-mode components. The stress intensity factors were determined by using the boundary element method (BEM) on the interface cracks. Variations of scarf angles and crack lengths emanating from a centered circular hole and an edged semicircular hole in the Al/Epoxy bonded scarf joints of dissimilar materials are computed. From these results, the stress intensity factor calculations are verified. In addition, the relationship between scarf angle variation and the effect by crack length and holes are discussed.

응력특이성계수에 의한 이종 접합재료의 강도평가 (Strength Evaluation of Bonded Dissimilar Materials by Using Stress Singularity Factor)

  • 정남용;오봉택
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2087-2096
    • /
    • 1996
  • Recentrly advantages in composite and light weight material techniques have led to the increased use of bonded dissimilar materials such as ceramics/metal bonded joints, IC package, brazing, coating and soldering in the various industries. It is required to analyze the evaluation method of fracture strength and design methodology of bonded joints in dissimilar materials. Stress singularity according to changes of scarf angles for bonded scarf joints in dissimilar materials was investigated by the boundary element method and static experiments. In this paper, effect of the stress singularity factors at the interface edges of scarf joints on various dissmilar materials combinations were investigated by analysis of its stress and stress singularity index using 2-dimensional elastic program of boundary element method. And the variations of stress singularity index by changes for Young's modulus ratios of materials and scarf angles were investigated. Also, it is found that stress singularities at bonded interface edges are disappeared for certain combination of scarf angle in a pair of bonded dissimilar materials. As the results, it is proposed that the strength evaluation by using stress singularity factors, $\Gamma$, considering stress singularity at the interface edges of bonded dissimilar materials, is very useful.

Al/ Epoxy 이종 접합체에 대한 계면강도의 평가방법 (Evaluation Method of Interface Strength in Bonded Dissimilar Materials of AU/Epxy)

  • 정남용
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2277-2286
    • /
    • 2002
  • The application of bonded dissimilar materials to industries as automobiles, aircraft, rolling stocks, electronic devices and engineering structures is increasing gradually because these materials, compared to the homogeneous materials, have many advantages for material properties. In spite of such wide applications of bonded dissimilar materials, the evaluation method of quantitative strength considering the stress singularities for its bonded interface has not been established clearly. In this paper, the stress singularity for Bctors and the stress intensity factors were analyzed by boundary element method(BEM) for the scarf joints of Al/Epoxy with and without a crack, respectively. From static fracture experiments of the bonded scarf joints, a fracture criterion and a evaluation method of interface strength in bonded dissimilar materials were proposed and discussed.

이종 접합부재의 계면균열 파괴인성의 평가 (Evaluation of Fracture Toughness on Interface Cracks in Bonded Components of Dissimilar Materials)

  • 정남용;이명대;박철희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.346-351
    • /
    • 2003
  • In this paper, an evaluation method of fracture toughness on interface cracks has been investigated under various mixed-mode conditions of the bonded scarf joints. Two types of the bonded scarf joints with an interface crack were prepared to analyze the stress intensity factors using boundary element method(BEM) and to perform the fracture toughness test. From the results of fracture toughness experiments and BEM analysis, an evaluation method of fracture toughness on interface cracks in the bonded components of dissimilar materials has been proposed and discussed.

  • PDF

이종 접합체의 계면균열에 대한 파괴인성의 평가방법 (An Evaluation Method of fracture Toughness on Interface Cracks in Bonded Dissimilar Materials)

  • 정남용
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.110-116
    • /
    • 2003
  • In this paper, an evaluation method of fracture toughness on interface cracks has been investigated under various mixed-mode conditions of the bonded scarf joints. Two types of the bonded scarf joints with an interface crack were prepared to analyze the stress intensity factors using boundary element method(BEM) and to perform the fracture toughness test. From the results of fracture toughness experiments and BEM analysis, an evaluation method of fracture toughness on interface cracks in the bonded dissimilar materials has been proposed and discussed.

복합재 스카프 조인트에서의 마이크로 볼트 보강에 대한 타당성 연구 (Effect of Micro-bolt Reinforcement for Composite Scarf Joint)

  • 이광은;성정원;권진회
    • Composites Research
    • /
    • 제32권1호
    • /
    • pp.37-44
    • /
    • 2019
  • 스카프 접착 조인트를 마이크로 볼트로 보강하였을 때, 볼트의 보강효과를 얻을 수 있는지를 시험으로 연구하였다. 스카프 형상에 따른 조인트 보강효과를 확인하기 위해 3가지 스카프비(1/10, 1/20, 1/30)를 고려하였다. 접착면적에 따른 핀의 밀도를 동일하게 유지하기 위해, 1/10, 1/20, 1/30 스카프비를 가지는 조인트에 각각 16, 32, 48개의 볼트를 보강하였다. 기준값을 획득하기 위해 접착제로만 체결된 조인트와 마이크로 볼트만 사용한 조인트에 대한 시험도 수행하였다. 시험 결과 접착제만 적용한 경우, 각 스카프비(1/10, 1/20, 1/30)에 따른 파손하중은 29.7, 39.6, 44.8 kN로 나타났다. 마이크로 볼트로 보강한 경우 파손하중은 스카프비에 따라 각각 28.4, 37.2, 40.1 kN으로 나타났는데, 순수 접착 조인트 파손하중의 96, 94, 90%에 해당한다. 마이크로 볼트만 사용한 경우, 파손하중은 접착 조인트 인장강도의 13-25%에 불과하였다. 스카프비 1/10 조인트의 피로시험 결과 접착제와 볼트를 동시에 사용한 하이브리드 조인트의 피로강도가 접착제만 사용한 경우의 피로강도보다 증가하였지만, 증가율은 2-3%로 미미하였다. 본 연구를 통해 박리응력이 파손의 주원인이 되는 구조물에서와 달리, 전단응력이 파손의 주원인이 되는 스카프 조인트의 경우 마이크로 볼트의 보강효과는 나타나지 않는 것을 확인하였다.

이종재료의 경사접착이음에 대한 파괴강도의 예측 (Prediction Fracture Strength on Adhesively Bonded scarf Joints in Dissimilar Materials)

  • 정남용
    • 한국생산제조학회지
    • /
    • 제4권4호
    • /
    • pp.50-60
    • /
    • 1995
  • Recently advantages joining dissimiliar materials and light weight material techniques have led to increasing use of structural adhesives in the various industries. Stress singulartiy occurs at the interface edges of adhesively bonded dissimilar materials. So it is required to analyze its stress singularity at the interface edges of adhesively bonded joints indissimilar materials. In this paper, the analysis method of stress singularity is studied in detail. Also, effects of the stress singularity at the interface edge of adhesively bonded scarf joints in combinations of dissimilar materials are investigated by using 2-dimensional elastic program of boundary element method. As the results, the strength evaluation method of adhesively bonded dissimilar materials using the stress singularity factor, $\Gamma$,is very useful. The fracture criterion, method of strength evaluation and prediction of fracture strength by the stress singularity factor on the adhesively bonded dissimilar materials are proposed.

  • PDF

낙엽송 소경각재의 종접합 성능평가 (Longitudinal Bonding Strength Performance Evaluation of Larch Lumber)

  • 이인환;박주현;송다빈;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권1호
    • /
    • pp.85-92
    • /
    • 2018
  • 소경각재를 이용한 소경각재 적층목을 기둥-보 목조건축 구조재로 이용하기 위해선 장대재 제작이 가능하여야 한다. 본 연구에서는 낙엽송 소경각재의 종접합 성능평가를 실시하였다. 시험편들은 종접합 방법에 따라 6가지 형상으로 제작하였으며 인장 및 휨 강도시험으로 종접합성능을 검토하였다. 종접합 접합부의 인장시험에서 Lap 시험편의 인장강도는 Double Lap 시험편보다 양호하였으며, Scarf 시험편의 인장강도는 Hooked scarf 시험편보다 양호하였다. Rod 시험편의 인장강도는 3.6 MPa로 가장 양호하였다. 종접합 접합부의 휨 시험결과 봉형 GFRP를 삽입 접착한 시험편들은 평균 29 MPa의 휨 파괴계수가 측정되었으며, 타 접합부 시험편들은 11 MPa 이하의 휨 파괴계수 값이 관찰되었다. 봉형 GFRP (Glass Fiber Reinforced Plastic)를 삽입 접착한 시험편들은 인성파괴가 관찰되었고 나머지 시험편들은 취성파괴가 발생하였다. Rod + Lap 시험편의 평균 휨 파괴계수가 30.5 MPa로 종접합한 시험편 중 가장 양호한 성능을 발휘하였다. Rod + Lap 시험편의 휨 강도는 종접합하지 않은 대조군 시험편 휨 파괴계수의 66%에 해당되었다. 낙엽송 소경각재 종접합 방법으로 봉형 GFRP 삽입 접착이 가장 유효한 강도를 나타내는 것을 확인하였다.

Al/Steel 이종재료의 접착이음에 대한 혼합모드의 파괴기준 (Fracture criterion of mixed mode in adhesively bonded joints of Al/Steel dissimilar materials)

  • 정남용;장진모
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1322-1331
    • /
    • 1997
  • A method of strength evaluation applying fracture mechanics in the adhesively bonded joints of Al/Steel dissimilar materials was investigated in this paper. Various shapes of adhesively bonded Al/Steel scarf joints focussing on fracture criterion of mixed mode crack were prepared for the static tests. Also, stress intensity factors of the interface cracks in adhesively bonded joints of Al/Steel dissimilar materials were analyzed with 2-dimensional elastic program of boundary element method(BEM), and the experiment of fracture toughness were carried out under various mixed mode conditions. From the results, the fracture criterion and method of strength evaluation by the fracture toughness in adhesively bonded joints of Al/Steel dissimilar materials were proposed.

이종접합재의 계면균열에 대한 진전경로의 예측 (Prediction of Propagation Path for the Interface Crack in Bonded Dissimilar Materials)

  • 정남용;송춘호
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.112-121
    • /
    • 1996
  • Applications of bonded dissimilar materials such as metal/ceramics and resin/metal joints, are very increasing in various industry fields. It is required to find crack propagation direction and path applying to the fracture mechanics on the bonded joint of dissimilar meterials. In this paper, crack propagation direction and path were simulated numerically by using boundary element method. Crack propagation angle is able to easily determine based on the maximum stress concept. Fracture tests of Al/Epoxy dissimilar materials with an interface crack are carried out under various mixed mode conditions by using the specimens of bonded scarf joints. It is found that the experimental results are well coincide with the analysis results of boundary element method.