• Title/Summary/Keyword: Bonded repair

Search Result 102, Processing Time 0.025 seconds

Properties of VES-LMC Adhesive Strength for Surface Removal Methods (절삭방법에 따른 VES-LMC의 부착강도 특성)

  • Kim, Ki-Heun;Jeong, Won-Kyong;Lee, Jin-Beom;Lee, Bong-Hak;Yun, Kyong-Koo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.543-546
    • /
    • 2005
  • The development and maintenance of a sound bond are an essential requirements of concrete repair and replacement. The bond property of a bonded overlay to its substrate concrete during the lifetime is one of the most important performance requirements which should be quantified This study was performed to investigate the characteristics of adhesive strength for overlay concrete. Three different removal methods of deteriorated concrete such as chip-patch, mill-patch and water-jet were varied in this study. According to the adhesive strength of pull- off test, case III using water-jet was measured $2\~3$ times higher than that of chip-patch or mill-patch.

  • PDF

A Development on Method of Strengthening Design for the Different Status of Damages (손상상태를 고려한 부재의 보강설계법 개발)

  • 한만엽;이성준
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2000
  • Recently, many strengthening methods are developed to repair damaged structures, when the original structure is under loading, which causes the difference of initial stresses between original member and bonded material. However, current design method or theory, which mostly depends on ultimately strength design, cannot account the difference of initial stresses between members, and it disregards the reduction of nominal strength. In this study, a new strengthening design theory and the amount of strengthening which can account the difference of initial stresses are developed, and applied to the case when a structure in service is repaired. The results show that the amount of strengthening material depends on the status of damages of structure, and the nominal strength is reduced depending on the degree of damages.

Structural Characterization of Repaired Sandwich Composite Laminates (샌드위치 복합재의 보수 후 특성평가)

  • Kim, Jung-Seok;Lee, Jae-Hun;Chung, Seong-Kyun;Kim, Seung-Chul;Seo, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.132-137
    • /
    • 2007
  • This paper explains compressive behaviors of sandwich composite laminates with adhesively bonded patches. The sandwich composite laminate is used for a train carbody structure and is of an aluminum honeycomb core and CF1263 woven fabric carbon/epoxy faces. The sandwich composite laminates were damaged by low velocity impact. The damaged sandwich composite laminate was repaired using scarf repair method. Then, the strength restoration of it was assessed by compressive test. From the test, it could be known that the compressive strength was restored up to 91% of undamaged one.

  • PDF

Resistance to Abrasive Wear of Materials Used as Metallic Matrices in Diamond Impregnated Tools

  • Konstanty, Janusz;Kim, Tai-Woung;Kim, Sang-Beom
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1132-1133
    • /
    • 2006
  • Metal-bonded diamond impregnated tools are being increasingly used in the processing of stone and ceramics, road repair, petroleum exploration, etc. Although the main tool wear mechanisms have been identified, the scientific background is inadequate and fundamental research has to be carried out to better understand the tool field behaviour. This work addresses the complex issues of modelling abrasive wear of the metallic matrix under laboratory conditions. The generated data indicates that the matrix wear resistance can be assessed in a simple manner; whereas tests carried out on diamond impregnated specimens may aid prediction of the tool life in abrasive applications.

  • PDF

Effect of Micro-bolt Reinforcement for Composite Scarf Joint (복합재 스카프 조인트에서의 마이크로 볼트 보강에 대한 타당성 연구)

  • Lee, Gwang-Eun;Sung, Jung-Won;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • The reinforcement effect of micro-bolt for a bonded scarf joint was investigated. Three scarf ratios of 1/10, 1/20, and 1/30 were considered to examine the effect of scarf patch configuration on joint strength. To maintain the same density of micro-bolt, 16, 32, and 48 bolts were installed in the scarf joint specimens with scarf ratios of 1/10, 1/20, and 1/30, respectively. Tests were also carried out on the joints that are bonded with only adhesive and that are fastened with only micro-bolts to obtain reference values. The average failure loads of the adhesive joints with scarf ratios of 1/10, 1/20, and 1/30 were 29.7, 39.6, and 44.8 kN, respectively. In case of micro-bolt reinforcement, the failure loads at the same scarf ratios were 28.4, 37.2, and 40.1 kN, respectively, which corresponds to 96, 94, and 90% of the pure adhesive joint failure loads. In the case of using only micro-bolts, the failure loads were only 13-25% of the average failure loads of pure adhesive joints. Fatigue test was also conducted for the joints with scarf ratio of 1/10. The results show that the fatigue strength of hybrid joints using both adhesive and microbolts together slightly increased compared to the fatigue strength of adhesive joint, but the rate of increase was small to 2-3%. Through this study, it was confirmed that the reinforcement effect of micro-bolt is negligible in the scarf joints where shear stress is dominating the failure, unlike in the structure where peel stress is dominant.

Fundamental Properties and Hydration Characteristics of Mortar Based on MgO Added Industrial By-products (산업부산물을 첨가한 MgO 기반 모르타르의 기초물성 및 수화특성에 관한 연구)

  • Hong, Sung-Gul;Kim, Do-Young;Lee, Dong-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.565-572
    • /
    • 2013
  • Hydration and physical characteristics of chemically-bonded phosphate ceramic (CBPC) binder based on dead-burned Mg-O with six different blends are investigated for efficient repair construction material by retarding set phase with $H_3BO_3$. The test specimen of the blender with silica fume shows higher compressive strength after 75 days. The CBPC with silica fume results in higher modulus of rupture that others. The test specimens of CBPC eludes lower calcium ion than that of OPC (Ordinay Portland Cement). The X-ray diffraction pattern shows that hydration results in the formation of magnesium hydroxide, M-S-H gel and $MgCO_3$ for the specimen with silica fumes. Combination with calcium for MgO is not desirable due to no formation of chemical bond between two components. Based on the experimental program, the mixture of MgO and silica fume shows efficient performance in strength and durability.

A STUDY ON THE SHEAR BOND STRENGTH OF ESTHETIC RESTORATIVE MATERIALS TO DENTAL AMALGAM (아말감과 심미성 수복재료와의 전단 결합강도에 관한 연구)

  • Jeong, Hye-Jeon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.129-141
    • /
    • 1995
  • Composite resin and glass-ionomer cement can be used for the purpose of repair of defective amalgam restoration. The purpose of this study was to evaluate of shear bond strength of esthetic restorative materials to dental amalgam. The materials used in this study were Photo Clearfil Bright(light curing composite resin), Clearfil F II(chemical curing composite resin), Fuji II LC(light curing glass-ionomer cement), Fuji II (chemical curing glass-ionomer cement), All-Bond 2(intermediary), and Scotchbond Multi-Purpose (intermediary). A total of 120 acrylic cylinders with amalgam were divided into 8 groups After amalgam condensation, all specimens were stored for 48 hours in water at $37^{\circ}C$ and tested with Instron universal testing machine between amalgam and composite resins and glass-ionomer cements. The data were analyzes statiscally by ANOVA and Duncan test. The following results obtained ; 1. The shear bond strength of bonded composite resin to amalgam was higher than bonded glass-ionomer cement(P<.001). 2. The group 4 had highest shear bond strength with 15.45kgf/$cm^2$ and the group 5 had lowest shear bond strenght with 3.26kgf/$cm^2$(P<.001). 3. In the group 3, 4, 5, 6, the group 3, 4 with All-Bond 2 had higher shear bond strength than the group 5, 6 with Scotch bond MP both in light-curing and in chemical curing. 4. Both in composite resin and glass-ionomer cement, chemical curing materials had higher shear bond stength than light curing materials(P<.001).

  • PDF

Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation

  • Aggelis, Dimitrios G.;Verbruggen, Svetlana;Tsangouri, Eleni;Tysmans, Tine;Van Hemelrijck, Danny
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.91-105
    • /
    • 2016
  • One of the most commonly used techniques to strengthen steel reinforced concrete structures is the application of externally bonded patches in the form of carbon fiber reinforced polymers (CFRP) or recently, textile reinforced cements (TRC). These external patches undertake the tensile stress of bending constraining concrete cracking. Development of full-field inspection methodologies for fracture monitoring are important since the reinforcing layers are not transparent, hindering visual observation of the material condition underneath. In the present study acoustic emission (AE) and digital image correlation (DIC) are applied during four-point bending tests of large beams to follow the damage accumulation. AE helps to determine the onset of fracture as well as the different damage mechanisms through the registered shifts in AE rate, location of active sources and change in waveform parameters. The effect of wave propagation distance, which in large components and in-situ can well mask the original information as emitted by the fracture incidents is also discussed. Simultaneously, crucial information is supplied by DIC concerning the moments of stress release of the patches due to debonding, benchmarking the trends monitored by AE. From the point of view of mechanics, conclusions on the reinforcing contribution of the different repair methodologies are also drawn.

THE EFFECTS OF SURFACE TREATMENT OF FRACTURED METAL-CERAMIC CROWN ON BOND STRENGTH OF REPAIR RESIN (파절된 도재전장관의 표면처리 방법에 따른 수복레진의 접합강도에 관한 연구)

  • Jeong, Ae-Ri;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 1991
  • The purpose of this study was to evaluate the effect of surface treatment of fractured metal-ceramic crown on bond strength of porcelain repair resin. The specimens were divided into two groups for metal specimens add five groups for porcelain specimens by surface treatment methods. the metal specimens were treated by 2 methods. : micro-sandblasting with $50{\mu}m$ aluminum oxide and grinding with diamond bur. The porcelain specimens were treated by 5 methods : micro-sandblasting with $50{\mu}m$ aluminum oxide, grinding with diamond bur, etching with porcelain etching agent, combination of micro-sandblasting and etching procedure, and combination of grinding and etching procedure. After surface treatment, each specimen was bonded with composite resin and the bond strength was measured and the surface texture was observed by scanning electromicroscope(SEM). The results were as follows : 1. There was significant difference in shear bond strength between metal specimen and prorcelain specimen. 2. Bood strength of metal specimens treated with diamond bur was higher than that treated with $50{\mu}m$ aluminum oxide sandblasting. 3. Bond strength of porcelain specimen treated with diamond bur was higher than that treated with $50{\mu}m$ aluminum oxide sandblasting and porcelain etching agent. 4. There was no significant difference in shear bond strength between the group treated with diamond bur and combined treatment groups respectively. 5. The large undercuts were observed in group treated with diamond bur by SEM.

  • PDF

An Investigation of fan type anchorages applied to end of CFRP strips

  • Kara, M. Emin;Yasa, Mustafa
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.605-621
    • /
    • 2013
  • CFRP strips are widely used nowadays for repair/strengthening or capacity increase purposes. Sharp bending at the ends of the CFRP strips is frequently encountered at these applications. In this study, Reinforced Concrete (RC) beam specimens that were produced with 10 MPa compression strength concrete were strengthened by using bonded CFRP strips with end anchorages to tension region. The parameters that were investigated in this study are the width of the strip, the number of applied fan anchorages and whether additional layer of CFRP patch is used or not at the strip ends. Specimens were strengthened with 100 mm wide CFRP strips with one or two anchorages at the ends. In addition CFRP patch with two and three anchorages at the ends were tested for investigating the effect of the patches. Specimens that were strengthened with three anchorages at the ends with patches were repeated with 60 and 80 mm wide CFRP strips. The most successful result was obtained from the specimen that was strengthened with 80 mm wide CFRP strips with 3 end anchorages and patches among the others at the experimental program. The numbers of anchorages that were applied to ends of CFRP strips were more effective than the width of the CFRP strips onto strength and stiffness of the specimens. Due to limited space at the ends of the strips at most three anchorages could be applied.