• Title/Summary/Keyword: Bonded powders

Search Result 55, Processing Time 0.028 seconds

Preparation of Bi-materials by Powder Metallurgy Method (분말야금법을 이용한 Bi-materials의 제조)

  • Lee In-Gyu;Lee Kwang-Sik;Chang Si-Young
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.462-466
    • /
    • 2004
  • The bi-materials composed of $Al-5wt{\%}Mg$ and its composite reinforced with SiC particles were prepared by ball-milling and subsequent sintering process. The size of powder in Al-Mg/SiCp mixture decreased with increasing ball-milling time, it was saturated above 30 h when the ball and powder was in the ratio of 30 to 1. Both $Al-5wt{\%}Mg$ powders mixture and $Al-5wt{\%}Mg/SiCp$ mixture were compacted under a pressure of 350MPa and were bonded by sintering at temperatures ranging from 873K to 1173K for 1-5h. At 873k, the sound bi-mate-rials could not be obtained. In contrast, the bi-materials with the macroscopically well-bonded interface were obtained at higher temperatures than 873K. The length of well-bonded interface became longer with increasing temperature and time, indicating the improved contact in the interface between unreinforced Al-Mg part and Al-Mg/SiCp composite part. The relative density in the bi-materials increased as the sintering temperature and time increased, and the bi-materials sintered at 1173K for 5h showed the highest density.

The Effects of Ball Size on Attritor Efficiency in the Processing of RBAO Ceramics (RBAO 세라믹스 공정에서 어트리터 효율에 미치는 볼 크기의 영향)

  • 김일수;강민수;박정현
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.406-412
    • /
    • 1998
  • The reaction bonded alumina ceramics was prepared through the addition of each SiC and ZrO2 powder to the mixture of Al metal powder and Al2O3 The mono sized (3mm) and biodal sized (3mm+5mm) balls were used in attrition milling of Al and starting powders. The milling efficiency of both cases was compared by the analysis of particle size and X-ray diffraction. After the forming and sintering of each powder batchs the weight gains dimensional changes and densities were determined. The specimens were investigated by X-ray diffraction analysis and scanning electron microscope. Bimodal sized balls had better milling effect than single ball size in the milling of Al powder. However in the milling which ceramic powders mono sized the green body during the reaction sintering at 1$600^{\circ}C$ for 5 hour was about 10% The densities attained the values of 92-98% theoretical. The SiC added specimen that was milled with 3mm ball media had 96% theoretical density and dense microstructure.

  • PDF

Surface Characterization of $\beta$-Sialon Powder Prepared from Hadong Kaolin (하동 카올린으로부터 제조한 $\beta$-Sialon 분체의 표면특성)

  • 임헌진;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.961-968
    • /
    • 1991
  • The nature and composition of the surfaces of silicon nitride and β-Sialon powders were investigated using high voltage and high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). β-Sialon powder was produced from Hadong kaolin by the carbothermic reduction and simultaneous nitridation. XPS showed that Al was contained in the surface of β-Sialon powder besides Si, N and O components, which is different from that of silicon nitride. It was supposed that Al in the surface of β-Sialon was bonded with oxygen from the oxygen-nitrogen ratio and the measurement of Al 2p binding energies. After both silicon nitride and β-Sialon powders were oxidized at 800℃ for 24h in air, nitrogen didn't exist in the surfaces and the depth of the oxide layer increased. The measurement of Si 2p binding energies showed that the chemical shifts occurred from Si3N2O and/or Si2N2O to SiO2 phase.

  • PDF

Compaction of Aggregated Ceramic Powders, Discrete Element and Finite Element Simulations

  • Pizette, P.;Martin, C. L.;Delette, G.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.187-188
    • /
    • 2006
  • In contrast with the Finite Element Method, the Discrete Element Method (DEM) takes explicitly into account the particulate nature of powders. DEM exhibits some drawbacks and many advantages. Simulations can be computationally expensive and they are only able to represent a volume element. However, these simulations have the great advantage of providing a wealth of information at the microstructural level. Here we demonstrate that the method is well suited for modelling, in coordination with FEM, the compaction of ceramic $UO_2$ particles that have been aggregated. Aggregates of individual ceramic crystallites that are strongly bonded together are represented by porous spheres.

  • PDF

Nominally Equivalent Powders for P/M Steels: Analysis of Response to Sintering and Differences at Various C Content

  • Bocchini, G. F.;Ienco, M. G.;Pinasco, M. R.;Stagno, E.;Baggioli, A.;Gerosa, R.;Rivolta, B.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.405-406
    • /
    • 2006
  • Raw materials from different sources, produced by a given process and having equal chemical composition, are supposed to be equivalent. The differences in sintering behavior have been investigated on P/M steels obtained from four diffusion-bonded powders (Fe + Ni + Cu + Mo) on atomized iron base, at the same alloy contents. Two levels of carbon and two sintering conditions have been investigated. Dimensional changes, C content, hardness, microhardness pattern, universal hardness, fractal analysis, pore features, microstructure features, and rupture strength have been compared to characterize different raw materials. The results show that the claimed equivalence is not confirmed by experimental data.

  • PDF

The alignment of Sr-ferrite magnetic powder in anisotropic Sr-ferrite/resin-bonded magnets (이방성 Sr-페라이트/ 레진본드 영구자석에서 Sr-페라이트 자성분말의 방향성)

  • 정원용;조태식;문탁진
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.219-225
    • /
    • 1994
  • The alignment of Sr-ferrite magnetic powders, which is usually related to the fluidity and the applied magnetic field, is investicated in the anisotropic Sr-ferrite / resin-bonded permanent magnets. The magnetic powder alignment is observed to increase with the applied magnetic field and the fluidity which is a function of molding temperature and powder packing ratio. The best magnetic powder alignment is achieved at the following conditions; Sr-ferrite packing ratio of 56vol%, apparent viscosity of about 3000 poise in $1000sec^{-1}$ shear rate, and applied magnetic field of about 5kOe. The degree of preferred orientation of the magnetic powders in the field direction, as determined by the dc hysterisis graphs, is 84~85% (0.84~0.85). This result is in agreement with the value of 0.85 obtained by the X-ray experiments in the $2{\theta}$ range of ${23~40}^0$. The best magnetic properties obtained are:2.2kG of remanent flux density, 2.2MGOe of maximum energy product.

  • PDF

Strengthening of conventional dental glass ionomer cement by addition of chitosan powders with low or high molecular weight (저/고분자량 키토산에 의한 종래형 치과용 글라스아이오노머 시멘트의 강화)

  • Kim, Dong-Ae;Kim, Gyu-Ri;Jun, Soo-Kyung;Lee, Jung-Hwan;Lee, Hae-Hyoung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • The aim of this study was to investigate the effects of chitosan powder addition on the strengthening of conventional glass ionomer cement. Two types of chitosan powders with different molecular weight were mixed with conventional glass ionomer cement (GIC): low-molecular weight chitosan (CL; 50~190 kDa), high-molecular weight chitosan (CH; 310~375 kDa). The chitosan powders (CL and CH) were separately added into the GIC liquid (0.25-0.5 wt%) under magnetic stirring, or mixed with the GIC powder by ball-milling for 24 h using zirconia balls. The mixing ratio of prepared cement was 2:1 for powder to liquid. Net setting time of cements was measured by ISO 9917-1. The specimens for the compressive strength (CS; $4{\times}6mm$), diametral tensile strength (DTS; $6{\times}4mm$), three-point flexure (FS; $2{\times}2{\times}25mm$) with flexure modulus (FM) were obtained from cements at 1, 7, and 14 days after storing in distilled water at $(37{\pm}1)^{\circ}C$. All mechanical strength tests were conducted with a cross-head speed of 1 mm/min. Data were statistically analyzed by one-way ANOVA and Tukey HSD post-hoc test. The mechanical properties of conventional glass ionomer cement was significantly enhanced by addition of 0.5 wt% CL to cement liquid (CS, DTS), or by addition of 10 wt% CH (FS) to cement powder. The CL particles incorporated into the set cement were firmly bonded to the GIC matrix (SEM). Within the limitation of this study, the results indicated that chitosan powders can be successfully added to enhance the mechanical properties of conventional GIC.

Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content (Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심)

  • Song, In-Hyuck;Park, Mi-Jung;Kim, Hai-Doo;Kim, Young-Wook;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.546-552
    • /
    • 2010
  • The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

Effect of Si Addition on Resistivity of Porous SiC-Si Composite for Heating Element Application (다공성 SiC-Si 복합체의 전기비저항에 미치는 Si 첨가량의 영향)

  • Jun, Shinhee;Lee, Wonjoo;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.258-263
    • /
    • 2015
  • To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of $1650^{\circ}C$ for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.

Effects of Injection Conditions on the Mechanical Properties of Nd-Fe-B Dielectromagnets

  • B.Slusarek;D.Bialo;J.Gromek;T.Kulesza
    • Journal of Magnetics
    • /
    • v.4 no.2
    • /
    • pp.52-54
    • /
    • 1999
  • Injection molding is one of the methods to prepare dielectromagnets-permanent magnets made from hard magnetic powder (or from mixture of powders) bonded by dielectric materials. Magnetic properties of dielectromagnets are worse than those of sintered magnets made from the same hard magnetic powders, but this type of the permanent magnet has many advantages. One of them is simpler technology-easier in comparison to the technology of sintered magnets. The injection molded dielectromagnets do not need any final treatment. This technology permits to control magnetic, thermal and mechanical properties of dielectromagnets. The main chracteristics of dielectormagnets are magnetic properties, however mechanical properties have serious influence onto a range of their applications. The main factors shaping mechanical properties have serious influence onto a range of their applications. The main factors shaping mechanical properties of dielectromagnets are the kind and quantity of resin and the technology. The purpose of this investigateion was to find the correlation between infection conditions and the mechanical properties of dielectromagnets. Influence of two parameters of injection, temperature and pressure on mechanical and magnetic properties of dielectromagnets were not significantly changed. Increasing of pressure of injection also does not influence on mechanical properties of analysed samples, however increasing of temperature of injection significantly improved both compression and bending strength.

  • PDF