• Title/Summary/Keyword: Bonded Materials

Search Result 959, Processing Time 0.025 seconds

EFFECTS OF HYDROFLUORIC ACID CONCENTRATION & ETCHING TIME ON THE SHEAR BOND STRENGTH BETWEEN LITHIUM DISILICATE CERAMIC AND RESIN CEMENT (불산 식각 농도 및 시간이 lithium disilicate 도재와 레진시멘트의 전단결합강도에 미치는 영향)

  • Seo, Jae-Min;Park, Charn-Woon;Ahn, Seung-Geun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.407-418
    • /
    • 2007
  • Purpose: The objective of this study was to evaluate the effects of hydrofluoric acid concentration & etching time on the shear bond strength between IPS Empress 2 ceramic and resin cement. Material and methods: Thirty three rectangular shape ceramic specimens($20{\times}12{\times}5mm$ size, IPS Empress 2 core materials) were used for this study. The ceramic specimens divided into ten experimental groups with three specimens in each group and were etched with hydrofluoric acid(4%, 9%) according to different etching times(30s, 60s, 90s, 120s, 180s). Etched surfaces of ceramic specimens were bonded with resin cement(Rely X Unicorn) using acrylic glass tube. All cemented specimens were tested under shear loading until fracture on universal testing machine at a crosshead speed of 0.5mm/min and the maximum load at fracture(kg) was recorded. Collected shear bond strength data were analyzed with one way ANOVA and Duncan tests. All etched ceramic surfaces were examined morphologically using SEM(scanning electron microscopy). Results: Shear bond strength of etching group$(35.89{\sim}68.01MPa)$ had four to seven times greater than no-etching group$(9.53{\pm}2.29MPa)$. The ceramic specimen etched with 4% hydrofluoric acid for 60s showed the maximum shear bond strength$(68.01{\pm}11.78MPa)$. Ceramic surface etched with 4% hydrofluoric acid for 60s showed most retentive surface texture. Conclusion: It is considered that 60s etching with 4% hydrofluoric acid is optimal etching methods for IPS Empress 2 ceramic bonding.

Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin

  • Arjmand, Nushin;Boruziniat, Alireza;Zakeri, Majid;Mohammadipour, Hamideh Sadat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • PURPOSE. The purpose of the current study was to evaluate the effect of incorporating nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) into a self-etching primer of a resin cement on the microtensile bond strength of dentin, regarding the proven antibacterial feature of NAg and remineralizing effect of NACP. MATERIALS AND METHODS. Flat, mid-coronal dentin from 20 intact extracted human third molars were prepared for cementation using Panavia F2.0 cement. The teeth were randomly divided into the four test groups (n=5) according to the experimental cement primer composition: cement primer without change (control group), primer with 1% (wt) of NACP, primer with 1% (wt) of physical mixture of NACP+Nag, and primer with 1% (wt) of chemical mixture of NACP+Nag. The resin cement was used according to the manufacturer's instructions. After storage in distilled water at $37^{\circ}C$ for 24 h, the bonded samples were sectioned longitudinally to produce $1.0{\times}1.0mm$ beams for micro-tensile bond strength testing in a universal testing machine. Failure modes at the dentin-resin interface were observed using a stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's post-hoc tests and the level of significance was set at 0.05. RESULTS. The lowest mean microtensile bond strength was obtained for the NACP group. Tukey's test showed that the bond strength of the control group was significantly higher than those of the other experimental groups, except for group 4 (chemical mixture of NACP and NAg; P=.67). CONCLUSION. Novel chemical incorporation of NAg-NACP into the self-etching primer of resin cement does not compromise the dentin bond strength.

In vitro shear bond strength between fluorinated zirconia ceramic and resin cements

  • Tanis, Merve Cakirbay;Akay, Canan;Akcaboy, Turgut Cihan;Sen, Murat;Kavakli, Pinar Akkas;Sapmaz, Kadriye
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.205-210
    • /
    • 2018
  • PURPOSE. The purpose of this study was to evaluate the efficiency of a gas-phase fluorination method under different fluorination periods through using two resin cements. MATERIALS AND METHODS. 84 zirconia specimens in dimensions of $5mm{\times}5mm{\times}2mm$ were prepared and surface treated with $50{\mu}m$ aluminum oxide particles or gas phase fluorination for 2 min, 5 min, or 10 min. One specimen in each group was surface analyzed under scanning electron microscope. The remaining specimens were bonded to composite cylinders in dimensions of 2 mm diameter and 3 mm high with Panavia SA Plus or Variolink N. Then, the specimens were stored in $37^{\circ}C$ distilled water for 24 hours and shear bond strength test was applied at a speed of 1 mm/min. RESULTS. The highest shear bond strength values were observed in the samples fluorinated for 5 minutes and cemented with Panavia SA Plus. Variolink N did not elicit any statistical differences between surface treatments. Panavia SA Plus resin cement and Variolink N resin cements featured statistically significant difference in shear bond strength values only in the case of 5 minutes of fluorination treatment. CONCLUSION. According to the results of this study, application of 5 minutes of fluorination with 10-methacryloyloxydecyl dihydrogen phosphate monomer (MDP) containing Panavia SA Plus resin cement increased the resin bond strength of zirconia. Fluorination of the zirconia surface using conventional resin cement, Variolink N, did not lead to an increase in bond strength.

Cracking Behavior Under Contact Stress in Densely Coated Porous Engineering Ceramics (치밀층으로 코팅된 다공성 엔지니어링 세라믹스에서의 접촉응력에 의한 균열 거동)

  • Kim, Sang-Kyum;Kim, Tae-Woo;Kim, Do-Kyung;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.554-560
    • /
    • 2005
  • The engineering ceramic needs the properties of high strength, hardness, corrosion-resistance and heat-resistance in order to withstand thermal shock or applied nonuniform stresses without failure. The densely coated porous ceramics can be used for machine component, electromagnetic component, bio-system component and energy-system component by their high-performances from superior coating properties and light-weight characteristics due to the structure including pore by itself. In this study we controlled the porosity of silica and alumina, $8.2\~25.4\%$ and $23.4\~36.0\%$, respectively, by the control of sintering temperature and starting powder size. We made bilayer structures, consisting of a transparent glass coating layer bonded to a thick substrate of different porous ceramics by a thin layer of epoxy adhesive, facilitated observations of crack initiation and propagation. The elastic modulus mismatch could be controlled using different porous ceramics as the substrate layer. Then we applied 150 N force using WC sphere with a radius of 3.18 mm by Hertzian indentation. As a result, the crack initiation in the coating layer was delayed at lower porosity in the substrate layer, and the damage in the coating layer was relatively smaller at the bilayer structure coated on higher elastic substrate.

An Experimental Study on the Strengthening Effect of RC Beams Strengthened by CFRP (탄소섬유 보강재로 보강한 RC 보의 보강효과에 관한 실험적 연구)

  • Kim, Jae-Hun;Park, Sung-Moo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.71-77
    • /
    • 2005
  • Bonded CFRP Plate method used murk in reinforcement method is very efficient for stress increment of reinforced members. But CFRP plate dosen't display enough its capacity and have the destruction characteristic of premature failure that reach failure by debond plate, because near-surface-bond using epoxy. Such destruction character of reinforced specimens take the influence at variables as steel reinforcement ratio, concrete strength, kind of reinforcement materials, reinforced length, property of epoxy used in binder and so on. In this study, performed experiment results are compared and considered on flexural performance of Near Surface Mounted Reinforcement used CFRP-Rod, as complement about structural behavior of RC beam reinforced flexural capacity in CFRP plate and premature failure of reinforcement material. Main variables of RC beam applied CFRP Plate external bond method are experimental variables as reinforcement length, reinforcement position (tension face and side face of beam) and existence of ironware in end parts. In case of CFRP-Rod, variable is reinforcement length.

  • PDF

Simulation of Ultrasonic Stress During Impact Phase in Wire Bonding

  • Mayer, Michael
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.7-11
    • /
    • 2013
  • As thermosonic ball bonding is developed for more and more advanced applications in the electronic packaging industry, the control of process stresses induced on the integrated circuits becomes more important. If Cu bonding wire is used instead of Au wire, larger ultrasonic levels are common during bonding. For advanced microchips the use of Cu based wire is risky because the ultrasonic stresses can cause chip damage. This risk needs to be managed by e.g. the use of ultrasound during the impact stage of the ball on the pad ("pre-bleed") as it can reduce the strain hardening effect, which leads to a softer deformed ball that can be bonded with less ultrasound. To find the best profiles of ultrasound during impact, a numerical model is reported for ultrasonic bonding with capillary dynamics combined with a geometrical model describing ball deformation based on volume conservation and stress balance. This leads to an efficient procedure of ball bond modelling bypassing plasticity and contact pairs. The ultrasonic force and average stress at the bond zone are extracted from the numerical experiments for a $50{\mu}m$ diameter free air ball deformed by a capillary with a hole diameter of $35{\mu}m$ at the tip, a chamfer diameter of $51{\mu}m$, a chamfer angle of $90^{\circ}$, and a face angle of $1^{\circ}$. An upper limit of the ultrasonic amplitude during impact is derived below which the ultrasonic shear stress at the interface is not higher than 120 MPa, which can be recommended for low stress bonding.

A Study on the Toothbrush-Dentifrice Abrasion of Class V Restroations (치경부 5급 와동 수복의 잇솔질 마모에 관한 연구)

  • Hwang, Su-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.69-81
    • /
    • 2005
  • The objective of this study was to evaluate the toothbrush abrasion characteristics of class V restorations. Thirty extracted human premolars, which were collected from oral surgery clinics were used. We mounted five teeth in a metal ring mold of 50 mm in diameter and 15 mm in height using chemically cured acrylic resin. Class V cavities were prepared in lingual cervical root surfaces and restored using one of following restorative materials : Dentin Conditioner/Fuji II LC (Group FL), All Bond II/Z-250 (Group ZT), One-up Bond F/Palfigue Estelite (Group PE), F2000 Primer/Adhesive (Group FT), and Prime & Bond 2.1/Dyract AP (Group DR). They were stored under distilled water at $37^{\circ}C$ for seven days. The toothbrush abrasion test was conducted using a wear testing machine of pin-on disk type under a load of 1.5 N for 100,000 cycles. We have examined the bonded interfaces, the changes of surface roughness and color of abraded surfaces. From this experiment, the following results were obtained. 1. The change of surface roughness showed high degree: RMGIC>compomer>composite resin (p<0.05). 2. Because of the protrusion and missing of filler particles, SEM observation of abraded surfaces of RMGIC and compomers revealed the increase of surface roughness due to the selective removal of matrix resin. 3. The color change by toothbrush abrasion was affected in large part by the change of $L^*$ and $b^*$ of resin composites (p<0.05). 4. The color change by toothbrush abrasion was so small to detect by human eyes. 5. SEM observation of abraded surfaces revealed the interface bonding was the best in the FT group.

The effect of dentin desensitizers and Nd:YAG laser pre-treatment on microtensile bond strength of self-adhesive resin cement to dentin

  • Acar, Ozlem;Tuncer, Duygu;Yuzugullu, Bulem;Celik, Cigdem
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.88-95
    • /
    • 2014
  • PURPOSE. The purpose of this study is to evaluate if pre-treatment with desensitizers have a negative effect on microtensile bond strength before cementing a restoration using recently introduced self-adhesive resin cement to dentin. MATERIALS AND METHODS. Thirty-five human molars' occlusal surfaces were ground to expose dentin; and were randomly grouped as (n=5); 1) Gluma-(Glutaraldehyde/HEMA) 2) Aqua-Prep F-(Fluoride), 3) Bisblock-(Oxalate), 4) Cervitec Plus-(Clorhexidine), 5) Smart protect-(Triclosan), 6) Nd:YAG laser, 7) No treatment (control). After applying the selected agent, RelyX U200 self-adhesive resin cement was used to bond composite resin blocks to dentin. All groups were subjected to thermocycling for 1000 cycles between $5-55^{\circ}C$. Each bonded specimen was sectioned to microbars ($6mm{\times}1mm{\times}1mm$) (n=20). Specimens were submitted to microtensile bond strength test at a crosshead speed of 0.5 mm/min. Kolmogorov-Smirnov, Levene's test, Kruskal-Wallis One-way Analysis of Variance, and Conover's nonparametric statistical analysis were used (P<.05). RESULTS. Gluma, Smart Protect and Nd:YAG laser treatments showed comparable microtensile bond strengths compared with the control group (P>.05). The microtensile bond strengths of Aqua-Prep F, and Cervitec Plus were similar to each other but significantly lower than the control group (P<.05). Bisblock showed the lowest microtensile bond strength among all groups (P<.001). Most groups showed adhesive failure. CONCLUSION. Within the limitation of this study, it is not recommended to use Aqua-prep F, Cervitec Plus and Bisblock on dentin when used with a self-adhesive resin cement due to the decrease they cause in bond strength. Beside, pre-treatment of dentin with Gluma, Smart protect, and Nd:YAG laser do not have a negative effect.

Microtensile bond strength of repaired indirect resin composite

  • Visuttiwattanakorn, Porntida;Suputtamongkol, Kallaya;Angkoonsit, Duangjai;Kaewthong, Sunattha;Charoonanan, Piyanan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2017
  • PURPOSE. The objective of this study was to investigate the effect of surface treatments on microtensile bond strengths (MTBSs) of two types of indirect resin composites bonded to a conventional direct resin composite. MATERIALS AND METHODS. Indirect resin composite blocks of Ceramage and SR Nexco were prepared in a plastic mold having a dimension of $10{\times}10{\times}4\;mm$. These composite blocks were divided into three groups according to their surface treatments: Group1: Sandblast (SB); Group2: Sandblast and ultrasonically clean (SB+UL); Group3: Sandblast plus silane (SB+SI). After bonding with direct resin composite, indirect-direct resin composite blocks were kept in distilled water for 24 hours at $37^{\circ}C$ and cut into microbars with the dimension of $1{\times}1{\times}8\;mm$. Microbar specimens (n = 40 per group) were loaded using a universal testing machine. Failure modes and compositions were evaluated by SEM. The statistical analyses of MTBS were performed by two-way ANOVA and Dunnett's test at ${\alpha}=.05$. RESULTS. Surface treatments and brands had effects on the MTBS without an interaction between these two factors. For SR Nexco, the MTBSs of SB and SB+SI group were significantly higher than that of SB+UL. For Ceramage, the MTBSs of SB and SB+SI were significantly higher than that of SB+UL. The mean MTBS of the Ceramage specimens was significantly higher than that of SR Nexco for all surface treatments. CONCLUSION. Sandblasting with or without silane application could improve the bond strengths of repaired indirect resin composites to a conventional direct resin composite.

Load-bearing capacity of various CAD/CAM monolithic molar crowns under recommended occlusal thickness and reduced occlusal thickness conditions

  • Choi, Sulki;Yoon, Hyung-In;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.423-431
    • /
    • 2017
  • PURPOSE. The goal of this study was to evaluate the fracture resistances of various monolithic crowns fabricated by computer-aided design and computer-aided manufacturing (CAD/CAM) with different thickness. MATERIALS AND METHODS. Test dies were fabricated as mandibular molar forms with occlusal reductions using CAD/CAM. With different occlusal thickness (1.0 or 1.5 mm), a polymer-infiltrated ceramic network (Enamic, EN), and zirconia-reinforced lithium silicate (Suprinity, SU and Celtra-Duo, CD) were used to fabricate molar crowns. Lithium disilicate (e.max CAD, EM) crowns (occlusal: 1.5 mm) were fabricated as control. Seventy crowns (n=10 per group) were bonded to abutments and stored in water for 24 hours. A universal testing machine was used to apply load to crown until fracture. The fractured specimens were examined with a scanning electron microscopy. RESULTS. The type of ceramics and the occlusal thickness showed a significant interaction. With a recommended thickness (1.5 mm), the SU revealed the mean load similar to the EM, higher compared with those of the EN and CD. The fracture loads in a reduced thickness (1.0 mm) were similar among the SU, CD, and EN. The mean fracture load of the SU and CD enhanced significantly when the occlusal thickness increased, whereas that of the EN did not. CONCLUSION. The fracture loads of monolithic crowns were differently influenced by the changes in occlusal thickness, depending on the type of ceramics. Within the limitations of this study, all the tested crowns withstood the physiological masticatory loads both at the recommended and reduced occlusal thickness.