• 제목/요약/키워드: Bond-slip

검색결과 314건 처리시간 0.031초

Concrete-steel bond-slip behavior of recycled concrete: Experimental investigation

  • Ren, Rui;Qi, Liangjie;Xue, Jianyang;Zhang, Xin;Ma, Hui;Liu, Xiguang;Ozbakkaloglu, Togay
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.241-255
    • /
    • 2021
  • In order to study the interfacial bond-slip behavior of steel reinforced recycled concrete (SRRC) under cyclic loading, thirteen specimens were designed and tested under cyclic loading and one under monotonic loading. The test results indicated that the average bond strength of SRRC decreased with the increasing replacement ratio of recycled concrete, whereas the bond strength increased with an increase in the concrete cover thickness, the volumetric stirrup ratio, and the strength of recycled concrete. The ultimate bond strength of the cyclically-loaded specimen was significantly (41%) lower than that of the companion monotonically-loaded specimen. The cyclic phenomena also showed that SRRC specimens went through the nonslip phase, initial slip phase, failure phase, bond strength degradation phase and residual phase, with all specimens exhibiting basically the same shape of the bond-slip curve. Additionally, the paper presents the equations that were developed to calculate the characteristic bond strength of SRRC, which were verified based on experimental results.

Bond-slip behavior of reactive powder concrete-filled square steel tube

  • Qiuwei, Wang;Lu, Wang;Hang, Zhao
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.819-830
    • /
    • 2022
  • This paper presented an experimental study of the bond-slip behavior of reactive powder concrete (RPC)-filled square steel tube. A total of 18 short composite specimens were designed forstatic push-out test, and information on their failure patterns, load-slip behavior and bond strength was presented. The effects of width-to-thickness ratio, height-to-width ratio and the compressive strength of RPC on the bond behavior were discussed. The experimental results show that:(1) the push-out specimens remain intact and no visible local buckling appears on the steel tube, and the interfacial scratches are even more pronounced at the internal steel tube of loading end; (2) the bond load-slip curves with different width-to-thickness ratios can be divided into two types, and the main difference is whether the curves have a drop in load with increasing slip; (3) the bond strength decreases with the increase of the width-to-thickness ratio and height-width ratio, while the influence of RPC strength is not consistent; (4) the slippage has no definite correlation with bond strength and the influence of designed parameters on slippage is not evident. On the basis of the above analysis, the expressions of interface friction stress and mechanical interaction stress are determined by neglecting chemical adhesive force, and the calculation model of bond strength for RPC filled in square steel tube specimens is proposed. The theoretical results agree well with the experimental data.

Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.651-661
    • /
    • 2017
  • This paper presents an experimental study of bond-slip behavior of reinforced lightweight aggregate concrete (LC) and normal weight concrete (NC) with embedded steel bar. Tests were conducted on tension-pull specimens that had cross-sectional dimension with a reinforcing bar embedded in the center section. The experimental variables include concrete strength (20, 40, and 60 MPa) and coarse aggregate type (normal-weight aggregate and reservoir sludge lightweight aggregate). The test results show that as concrete compressive strength increased, the magnitudes of the slip of the LC specimens were greater than those of the NC specimens. Moreover, the bond strength and stiffness approaches zero at the loaded end, or close to the central anchored point of the specimen. In addition, the proposed bond stress-slip equation can effectively estimate the behavior of bond stress and steel bar slipping.

반복하중 하에서 부착응력-슬립 거동 실험적 연구 (Experimental Study of Bond Stress-Slip Behavior under Repeated Loading)

  • 오병환;김세훈;김지상;신용석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.215-218
    • /
    • 2003
  • To analyze a bond stress-slip behavior between a reinforcing bar and concrete under repeated loading, pull-out fatigue test was performed. Major variables were repeated stress levels and cycle numbers. Test specimen was taken repeated constant amplitude loading before it was fractured by pull-out test. Increments of bond strength and slip according to repeated stress level and cycle numbers were analyzed. On the basis of test results, Local bond stress-slip relationship under repeated loading were formulated

  • PDF

콘크리트내 표면매입 보강된 FRP 판과 콘크리트 사이의 착-미끄러짐 관계 해석 (Analysis on the Interfacial Bond-Slip Relationship between ear Surface-Mounted FRP Plate and Concrete)

  • 서수연
    • 콘크리트학회논문집
    • /
    • 제26권1호
    • /
    • pp.79-86
    • /
    • 2014
  • 이 연구는 표면매입 보강된 FRP 판과 콘크리트사이의 응력전달기구를 이론적으로 연구한 것으로서 이선형 부착모델을 이용하여 부착거동을 묘사하고 이를 실험 결과와 비교하여 신뢰성있는 해석방법을 제시하였다. 연구로부터, 표면매입된 FRP 판과 콘크리트사이의 계면특성을 고려한 미분방정식에 이선형 부착-미끄러짐 관계곡선을 사용하여 해석할 경우, 모델의 임계값인 최대전단강도와 미끄러짐 변위, 그리고 박락에 의한 연화거동이 시작될 때의 변위값 선정과정이 제시되었다. 또한 제안된 모델을 사용하여 부착길이가 다르게 보강된 표면매입 FRP 판의 미끄러짐 거동을 해석한 결과 실제 거동을 매우 근사하게 묘사할 수 있는 것으로 나타났다.

Effect of high temperature on the bond performance between steel bars and recycled aggregate concrete

  • Yan, Lan-Lan;Liang, Jiong-Feng;Zhao, Yan-gang
    • Computers and Concrete
    • /
    • 제23권3호
    • /
    • pp.155-160
    • /
    • 2019
  • The use of recycled aggregate concrete for the purpose of environmental and resource conservation has gained increasing interest in construction engineering. Nevertheless, few studies have reported on the bonding performance of the bars in recycled aggregate concrete after exposed to high temperatures. In this paper, 72 pull-out specimens and 36 cubic specimens with different recycled coarse aggregate content (i.e., 0%, 50%,100%) were cast to evaluate the bond behavior between recycled aggregate concrete and steel bar after various temperatures ($20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$). The results show that the recycled aggregate concrete pull-out specimens exhibited similar bond stress-slip curves at both ambient and high temperature. The bond strength declined gradually with the increase of the temperature. On the basis of a regression analysis of the experimental data, a revised bond strength mode and peak slip ratios relationship model were proposed to predict the post-heating bond-slip behavior between recycled aggregate concrete and steel bar.

철근 콘크리트 부재의 부착거동에 관한 실험적 연구 (An Experimental Investigation on the Bond Characteristics of Reinforced Concrete Structure)

  • 오병환;이성로;방기성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.122-127
    • /
    • 1990
  • The transfer of forces across the interface by bond between concrete and steel is of fundamental importance to many aspects of reinforced concrete behavior. Bond stress - slip relationships were studied using a symmetrical tension test specimen. This type of test is intented to simulate conditions in the tension zone of a concrete beam between primary cracks and below the neutral axis. These relationships between local bond stress and local slip are quite different at different locations along the bar. The present study allows more accurate analysis of reinforced concrete structures by employing more realistic bond stress-slip relations.

  • PDF

Modelling of shear deformation and bond slip in reinforced concrete joints

  • Biddah, Ashraf;Ghobarah, A.
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.413-432
    • /
    • 1999
  • A macro-element model is developed to account for shear deformation and bond slip of reinforcement bars in the beam-column joint region of reinforced concrete structures. The joint region is idealized by two springs in series, one representing shear deformation and the other representing bond slip. The softened truss model theory is adopted to establish the shear force-shear deformation relationship and to determine the shear capacity of the joint. A detailed model for the bond slip of the reinforcing bars at the beam-column interface is presented. The proposed macro-element model of the joint is validated using available experimental data on beam-column connections representing exterior joints in ductile and nonductile frames.

Improved numerical approach for the bond-slip behavior under cyclic loads

  • Kwak, H.G.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.663-677
    • /
    • 1997
  • Bond-slip behavior between reinforcement and concrete under push-pull cyclic loadings is numerically investigated based on a reinforcement model proposed in this paper. The equivalent reinforcing steel model considering the bond-slip effect without taking double nodes is derived through the equilibrium at each node of steel and the compatibility condition between steel and concrete. Besides a specific transformation algorithm is composed to transfer the forces and displacements from the nodes of the steel element to the nodes of the concrete element. This model first results in an effective use in the case of complex steel arrangements where the steel elements cross the sides of the concrete elements and second turns the impossibility into a possibility in consideration of the bond-slip effect in three dimensional finite element analysis. Finally, the correlation studies between numerical and experimental results under the continuously repeated large deformation stages demonstrate the validity of developed reinforcing steel model and adopted algorithms.

유한요소해석을 활용한 지진하중에 대한 철근콘크리트 건축물의 부착성능 효과 연구 (Bond-slip Effect of Reinforced Concrete Building Structure under Seismic Load using Finite Element Analysis)

  • 김예은;김혜원;신지욱
    • 한국공간구조학회논문집
    • /
    • 제22권4호
    • /
    • pp.99-107
    • /
    • 2022
  • Existing reinforced concrete building structures constructed before 1988 have seismically-deficient reinforcing details, which can lead to the premature failure of the columns and beam-column joints. The premature failure was resulted from the inadequate bonding performance between the reinforcing bars and surrounding concrete on the main structural elements. This paper aims to quantify the bond-slip effect on the dynamic responses of reinforced concrete frame models using finite element analyses. The bond-slip behavior was modeled using an one-dimensional slide line model in LS-DYNA. The bond-slip models were varied with the bonding conditions and failure modes, and implemented to the well-validated finite element models. The dynamic responses of the frame models with the several bonding conditions were compared to the validated models reproducing the actual behavior. It verifies that the bond-slip effects significantly affected the dynamic responses of the reinforced concrete building structures.