• 제목/요약/키워드: Bond-slip

검색결과 312건 처리시간 0.02초

부착슬립에 의한 강체변형을 고려한 철근콘크리트 보의 비선형해석 (Nonlinear Analysis of RC Beams Considering Fixed-End Rotation due to Bond-Slip)

  • 곽효경;김선필
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.456-463
    • /
    • 2005
  • An analytical procedure to analyze reinforced concrete (RC) beams subject to monotonic loadings is proposed on the basis of the moment-curvature relations of RC sections. Unlike previous analytical models which result the overestimation of stiffnesses and underestimation of structural deformations induced from ignoring the shear deformation and assuming perfect-bond condition between steel and concrete, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end. The advantages of the proposed relation, compared with the previous numerical models, are on the promotion in effectiveness of analysis and reflection of influencing factors which must be considered in nonlinear analysis of RC beam by taking into account the nonlinear effects into the simplifying moment-curvature relation. Finally, correlation studies between analytical and experimental results are conducted to establish the applicability of the proposed model to the nonlinear analysis of RC structures.

  • PDF

부착슬립 효과를 고려한 유한요소 모델 (Finite Element Model Considering the Bond-Slip Effect)

  • 최창근;곽효경
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.17-22
    • /
    • 1991
  • An accurate and efficient analytical model describing the bond effect between reinforcing steel and concrete without taking the double nodes is presented. To increase the efficiency of the solution and reduce the number of degrees of freedom, the reinforcing bar elements are considered to be embedded in the connote elements. Relative douses of freedom accounting for the relative slip between reinforcing steel and concrete are condensed out during the stiffness formation phase. However, these degrees of freedom Can be taken into account explicitly by solving the constructed global equilibrium equation for each reinforcing steel. The usefulness of proposed model is established through the comparison with the experimental data subjected on push and push-pull loadings.

  • PDF

균열 및 부착슬립효과를 고려한 철근콘크리트 구조물의 비선형 유한요소해석 (Nonlinear Finite Element Analysis of Reinforced Concrete Structures Considering the Crack and Bond-Slip Effects)

  • 곽효경
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.65-70
    • /
    • 1992
  • This study deals with the finite element analysis of the monotonic behavior of reinforced concrete beams and beam-column joint subassemblages. It is assumed that the behavior of these members can be discribed by a plane stress field. Concrete and reinforcing steel are represented by separate material models which are combined together with a model of the interaction between reinforcing bar and concrete through bond-slip to discribe the behavior of the composite reinforced concrete material. To discribe the concrete behavior, a nonlinear orthotropic model is adopted and the crack is discribed by a system of orthogonal cracks, which are rotating as the principal strain directions are changed. A smeared finite element model based on the fracture mechanics principles are used to overcome the numerical defect according to the finite element mesh size. Finally, correlation studies between analytical and experimental results and several parameter studies are conducted with the objective to estabilish the validity of the proposed model and identify the significance of various effects on the local and global response of reinforced concrete members.

  • PDF

FRP-콘크리트 계면의 부착모델 II : 부착특성 (Bond-Slip Model for FRP-Concrete Interface II: Characteristics of Adhesive Joint)

  • 조정래;조근희;박영환;박종섭;유영준;정우태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.902-907
    • /
    • 2003
  • Substantial experimental and theoretical work exists on the bond characteristics of FRP-concrete adhesive joints. Analytic solutions based on fracture mechanics are most commonly accepted for theoretical work on joint. The solutions may be derived for the simple form of the shear strees-slip curve. And it is difficult to determine the model parameters consisting the curve. In this study, the bilinear curve with softening branch is introduced. The model parameters are determined by the method described by the companion paper with comparison of test results. There are many uncertainties in the test results of CFRP sheet adhesive joints, so that test results used for the construction of the regression problem should be reasonably selected.

  • PDF

반복하중을 받는 철근콘크리트 기둥의 비선형 거동 (Nonlinear Behavior of RC Columns Subjected to Cyclic Loadings)

  • 곽효경;김선필
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.475-482
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment4curvature models and the layered section approach, the proposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching effect caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial lone. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. Finally, correlation studies between analytical result and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

탄소섬유판으로 보강된 철근콘크리트 보의 휨거동해석 (Flexural Behavior of Reinforced Concrete Beams Strengthened by CFRP Plates)

  • 양동석;고병순;박선규;유영찬;최기선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.243-246
    • /
    • 2005
  • This paper focuses on the flexural behavior of RC beams externally reinforced using Carbon Fiber Reinforced Plastics plates (CFRP). A non-linear finite element (FE) analysis is proposed in order to complete the experimental analysis of the flexural behaviour of the beams. This paper is a part of a complete program aiming to set up design formulate to predict the strength of CFRP strengthened beams, particularly when premature failure through plates-end shear or concrete cover delamination occurs. An elasto-plastic behaviour is assumed for reinforced concrete and interface elements are used to model the bond and slip.

  • PDF

모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석 (Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship.)

  • 곽효경;김선필
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.190-197
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

A new approach for nonlinear finite element analysis of reinforced concrete structures with corroded reinforcements

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • 제5권2호
    • /
    • pp.155-174
    • /
    • 2008
  • A new approach for nonlinear finite element analysis of corroded reinforcements in RC structures is elaborated in the article. An algorithmic procedure for producing the tension-stiffening curve of RC elements taking into consideration most of effective parameters, e.g.: the rate of steel bar corrosion, bond-slip behavior, concrete cover and amount of reinforcement, is illustrated. This has been established on both experimental and analytical bases. This algorithm is implemented into a nonlinear finite element analysis program. The abilities of the resulted program have been studied by modeling some experimental specimens showing a reasonable agreement between the analytical and experimental findings.

반복하중을 받는 RC기둥의 비선형 해석을 위한 모멘트-곡률 관계의 개발 (Nonlinear Analysis of RC Columns under Cyclic Loading Based on Moment-Curvature Relationship)

  • 곽효경;김선필
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.3-11
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the unposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching enact caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial force. The advantages of the proposed model, comparing tn layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures.. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed mood.

  • PDF

강-콘크리트 계면파괴에 관한 비선형 유한요소해석 (Nonlinear Finite Element Analysis of Considering Interface Behaviors between Steel and Concrete)

  • 주영태;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.105-108
    • /
    • 2004
  • In general, the nonlinear behavior of composite structures composing of steel and concrete is analyzed on the basis of the assumption of the perfect bond actions in steel-concrete interface in which the interface slip or separation is not allowed. The assumption is based on the fact that the full interface bond behavior is provided with the mechanical connectors of studs. However, since the number and spacing of the studs are determined by the stress resultants calculated in the interface area, the interface analysis is required to evaluate the stress resultants. This paper describes the nonlinear steel-concrete interface behavior considering the two interface failure mechanisms of slip and separation. Elastoplastic constitutive relation is developed. thru the formulation framework using the two energy dissipation mechanisms. As the result, the steel plate push-out tests sandwitched between concrete blocks are analyzed and compared with the test results with which the good agreements are observed.

  • PDF