• Title/Summary/Keyword: Bond test

Search Result 1,571, Processing Time 0.027 seconds

Buildability for Concrete 3D Printing According to Printing Time Gap (콘크리트 3D프린팅의 적층시간 간격에 따른 적층 성능)

  • Lee, Yoon Jung;Song, Jin-Soo;Choi, Seung-Ho;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.131-136
    • /
    • 2019
  • Buildability of fresh concrete, a key element of Concrete 3D printing, is the ability to build filaments at a desirable height without excessive deformation or collapse. Buildability is closely related to yield stress, and the higher the yield stress, the better. Also, the shear stress of fresh concrete increases as it hardens over the time after extruded, and consequently the buildability increases. Therefore, in concrete 3D printing, proper time gaps between printed layers (Printing Time Gap, PTG) are required to ensure the buildability of fresh concrete. As the PTG increases, the buildability increases; however, an excessive PTG reduces the bond performance between the printed layers, and the extrudability can be lowered as the printing time increases. In this research, therefore, 3D printing experiments were conducted with the variable of PTG to examine the buildability of 100 MPa-high strength concrete. In addition, a pseudo-layer loading method was applied to simulate the buildability test for 3D concrete printing and its applicability was examined.

Study on the Thermal Degradation Behavior of FKM O-rings

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yoon, Yoo-Mi;Park, Sung Han;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • The degradation mechanism and physical properties of an FKM O-ring were observed with thermal aging in this experiment. From X-ray photoelectron spectroscopy (XPS) analysis, we could observe carbon (285 eV), fluoro (688 eV), and oxygen (531 eV) peaks. Before thermal aging, the concentration of fluoro atoms was 51.23%, which decreased to 8.29% after thermal aging. The concentration of oxygen atoms increased from 3.16% to 20.39%. Under thermal aging, the FKM O-ring exhibited debonding of the fluoro-bond by oxidation. Analysis of the C1s, O1s, and F1s peaks revealed that the degradation reaction usually occurred at the C-F, C-F2, and C-F3 bonds, and generated a carboxyl group (-COOH) by oxidation. Due to the debonding reaction and decreasing mobility, the glass transition temperature of the FKM O-ring increased from $-15.91^{\circ}C$ to $-13.79^{\circ}C$. From the intermittent CSR test, the initial sealing force was 2,149.6 N, which decreased to 1,156.2 N after thermal aging. Thus, under thermal aging, the sealing force decreased to 46.2%, compared with its initial state. This phenomenon was caused by the debonding reaction and decreasing mobility of the FKM O-ring. The S-S curve exhibited a 50% increase in modulus, with break at a low strain and stress state. This was also attributed to the decreasing mobility due to thermal aging degradation.

Effect of Pre-Heat Treatment on Bonding Properties in Ti/Al/STS Clad Materials (Ti/Al/STS 클래드재의 접합특성에 미치는 예비 열처리의 영향)

  • Bae, Dong-Hyun;Jung, Su-Jung;Cho, Young-Rae;Jung, Won-Sup;Jung, Ho-Shin;Kang, Chang-Yong;Bae, Dong-Su
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.573-579
    • /
    • 2009
  • Titanium/aluminum/stainless steel(Ti/Al/STS) clad materials have received much attention due to their high specific strength and corrosion-resisting properties. However, it is difficult to fabricate these materials, because titanium oxide is easily formed on the titanium surface during heat treatment. The aim of the present study is to derive optimized cladding conditions and thereupon obtain the stable quality of Ti/Al/STS clad materials. Ti sheets were prepared with and without pre-heat treatment and Ti/Al/STS clad materials were then fabricated by cold rolling and a post-heat treatment process. Microstructure of the Ti/Al and STS/Al interfaces was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersed X-ray Analyser(EDX) in order to investigate the effects of Ti pre-heat treatment on the bond properties of Ti/Al/STS clad materials. Diffusion bonding was observed at both the Ti/Al and STS/Al interfaces. The bonding force of the clad material with non-heat treated Ti was higher than that with pre-heat treated Ti before the cladding process. The bonding force decreased rapidly beyond $400^{\circ}C$, because the formed Ti oxide inhibited the joining process between Ti and Al. Bonding forces of STS/Al were lower than those of Ti/Al, because brittle $Fe_3Al$, $Al_3Fe$ intermetallic compounds were formed at the interface of STS/Al during the cladding process. In addition, delamination of the clad material with pre-heat treated Ti was observed at the Ti/Al interface after a cupping test.

Measurement of Formaldehyde Emissions during Hot-Pressing of Particleboard Bonded with Melamine-Urea-Formaldihyde Resin (요소-멜라민수지로 접착된 파티클보드의 열압동안 포름알데히드 배출량 측정)

  • Lee, Jong-Kyu;Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.65-72
    • /
    • 2004
  • A melamine-urea-formaldehyde (MUF) resin, based on 5 percent melamine addition of the resin solids weight, was synthesized in the laboratory for particleboard (PB) manufacture. Laboratory PBs were made with the MUF resin at three press times (3, 4, 5 min) and two resin application rates (6, 8 percent). Enclosed caul system was used for collecting the exhaust gases materials generated during the hot-pressing of PBs. Exhaust gases materials generated inside the enclosed caul during the hot-pressing of PBs were collected in a controlled air stream. Formaldehyde from the exhaust gases collected was determined per a chromotropic method of the National Institute of Occupational Safety and Health Method 3500. The measurement results showed that formaldehyde emissions during the hot-pressing of PB significantly increased with increasing press time, and MUF resin application rates. PB' performance test results showed that internal bond (IB) of PB made with 3-minute press time exceeded the minimum requirement for KS F 3104 PB type 8.0.

Performance of Wood-plastic Panel Made from Populus alba × glandulosa and Low Density Polyethylene (은수원사시나무와 저밀도 폴리에틸렌으로 제조된 목질플라스틱패널의 성능)

  • Kwak, Jun-Hyuk;Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.67-72
    • /
    • 2004
  • Wood/polyethylene panels were manufactured from Populus alba × glandulosa particles and low density polyethylene particles at three mixing rates, 50:50, 60:40, and 70:30. A total of 15 wood/polyethylene panels was made at 145℃ and 5 minutes hot-press time. Wood/polyethylene panels were tested for internal bond, bending, and dimensional stabilities such as thickness swell and water absorption. Panel performance data were analyzed using the SAS programing package. The test results of the wood/polyethylene panels showed that as the polyethylene mixing rates were increased, the panel property values increased. Based on panels' dimensional stabilities, the optimum wood/polyethylene mixing ratio appeared to be 60:40.

Flexural bearing capacity and stiffness research on CFRP sheet strengthened existing reinforced concrete poles with corroded connectors

  • Chen, Zongping;Song, Chunmei;Li, Shengxin;Zhou, Ji
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.29-42
    • /
    • 2022
  • In mountainous areas of China, concrete poles with connectors are widely employed in power transmission due to its convenience of manufacture and transportation. The bearing capacity of the poles must have degenerated over time, and most of the steel connectors have been corroded. Carbon fiber reinforced polymer (CFRP) offers a durable, light-weight alternative in strengthening those poles that have served for many years. In this paper, the bearing capacity and failure mechanism of CFRP sheet strengthened existing reinforced concrete poles with corrosion steel connectors were investigated. Four poles were selected to conduct flexural capacity test. Two poles were strengthened by single-layer longitudinal CFRP sheet, one pole was strengthened by double-layer longitudinal CFRP sheets and the last specimen was not strengthened. Results indicate that the failure is mainly bond failure between concrete and the external CFRP sheet, and the specimens fail in a brittle pattern. The cross-sectional strains of specimens approximately follow the plane section assumption in the early stage of loading, but the strain in the tensile zone no longer conforms to this assumption when the load approaches the failure load. Also, bearing capacity and stiffness of the strengthened specimens are much larger than those without CFRP sheet. The bearing capacity, initial stiffness and elastic-plastic stiffness of specimen strengthened by double-layer CFRP are larger than those strengthened by single-layer CFRP. Weighting the cost-effective effect, it is more economical and reasonable to strengthen with single-layer CFRP sheet. The results can provide a reference to the same type of poles for strengthening design.

A Study on the Behaviour of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.89-97
    • /
    • 2008
  • A series of field tests were performed to investigate the behavior of jacket anchor and to evaluate the ultimate bond stress of jacket anchor. From twelve sets of field tests on the jacket anchor and general type ground anchor, it was observed that the pullout resistance of jacket anchor is significantly larger than that of the ground anchor and that the plastic deformation of jacket anchor is significantly smaller than that of general ground anchor at the same loading cycle. Especially in gravel layers, the jacket anchor provides more than 250% increase in ultimate resistance and more than 600% reduction in plastic deformation, compared with the general ground anchor. Finally, the relationship between the injection pressure and overburden pressure is proposed to determine the optimum injection pressure, based on additional field test results.

Tension-Stiffening Model and Application of Ultra High Strength Fiber Reinforced Concrete (초고강도 강섬유보강 철근콘크리트의 인장강화 모델 및 적용)

  • Kwak, Hyo-Gyoung;Na, Chaekuk;Kim, Sung-Wook;Kang, Sutae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.267-279
    • /
    • 2009
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber reinforced concrete (UHSFRC) structures subjected to monotonic loading is introduced. The material properties of UHSFRC, such as compressive and tensile strength or elastic modulus, are different from normal strength reinforced concrete. The uniaxial compressive stress-strain relationship of UHSFRC is designed on the basis of experimental result, and the equivalent uniaxial stress-strain relationship is introduced for proper estimation of UHSFRC structures. The steel is uniformly distributed over the concrete matrix with particular orientation angle. In advance, this paper introduces a numerical model that can simulate the tension-stiffening behavior of tension part of the axial member on the basis of the bond-slip relationship. The reaction of steel fiber is considered for the numerical model after cracks of the concrete matrix with steel fibers are formed. Finally, the introduced numerical model is validated by comparison with test results for idealized UHSFRC beams.

A Study on the Basic Development Length of GFRP Rebar With Ribs (이형 GFRP 보강근의 기본정착길이에 대한 연구)

  • Moon, Do Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.485-493
    • /
    • 2010
  • GFRP rebar with ribs resemble those of deformed steel rebar was developed in 2005. It was reported that ribs of the GFRP rebar were sheared off due to the lower shear strength of polymer. In this study, the basic development length of the GFRP rebar was investigated through pull-out tests, models specified in ACI440.1R-03 and -06, and empirical model derived by Cosenza et al. (2002). As a results of pull-out tests, the critical embeddment length, which is defined as the length when failure mode is changed from pull-out to bar fracture, was 20 times of bar diameter for GFRP rebar and was 15 times for steel rebar. It is believed that the basic development of the GFRP rebar is 21 times of bar diameter, which is determined from the application of average bond strength into the model equation specified in ACI440.1R-03. Compared to the model equation in ACI440.1R-06, that in ACI440.1R-03 is recommendable for design purpose. The Cosenza et al.'s model underestimates the basic development length of the GFRP rebar.

Effect of dentin roughening and type of composite material on the restoration of non-carious cervical lesions: an in vivo study with 18 months of follow-up

  • Sanjana Verma;Rakesh Singla;Gurdeep Singh Gill;Namita Jain
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.4
    • /
    • pp.35.1-35.14
    • /
    • 2023
  • Objectives: The purpose of this study was to evaluate the impact of dentin roughening and the type of composite resin used (either bulk-fill flowable or nanohybrid) on the restoration of non-carious cervical lesions (NCCLs) with an 18-month follow-up period. Materials and Methods: This prospective split-mouth study included 36 patients, each with a minimum of 4 NCCLs. For each patient, 4 types of restorations were performed: unroughened dentin with nanohybrid composite, unroughened dentin with bulk-fill flowable composite, roughened dentin with nanohybrid composite, and roughened dentin with bulk-fill flowable composite. A universal bonding agent (Tetric N Bond Universal) was applied in self-etch mode for all groups. The restorations were subsequently evaluated at 6, 12, and 18 months in accordance with the criteria set by the FDI World Dental Federation. Inferential statistics were computed using the Friedman test, with the level of statistical significance established at 0.05. Results: The 4 groups exhibited no significant differences in relation to fracture and retention, marginal staining, marginal adaptation, postoperative hypersensitivity, or the recurrence of caries at any follow-up point. Conclusions: Within the limitations of the present study, over an 18-month follow-up period, no significant difference was present in the clinical performance of bulk-fill flowable and nanohybrid composite restorations of non-carious cervical lesions. This held true regardless of whether dentin roughening was performed.