• Title/Summary/Keyword: Bond number

Search Result 309, Processing Time 0.027 seconds

A study on the water vapor permeability velocity of Polypropylene spunbond non-woven fabrics (폴리프로필렌 부직포의 투습속도에 관한 연구)

  • Choi, Jae-Woo;Jun, Byung-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.3
    • /
    • pp.229-233
    • /
    • 2006
  • The water vapor permeability of polypropylene spun bond non-woven fabrics were investigated with the water vapor permeability velocity at $20^{\circ}C$, $30^{\circ}C$ and $40^{\circ}C$ by applying the hygroscopic method. At each temperature 50, 65 and 80 %RH conditions were used. The results indicated that the water vapor permeability velocity increased with increasing the water vapor concentration difference between both sides of sample surfaces and it decreased with increasing the number of the piled-up fabrics and the apparent density.

  • PDF

An Experimental Study on Flexcural Performance of Repaired R/C Beams with CFS (탄소섬유시트에 의한 콘크리트 보의 휨보강효과에 관한 실험연구)

  • 이리형;이용택;김승훈;강윤구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.605-610
    • /
    • 1997
  • An experimental investigation was conducted to examine the feasibility of Carbon Fiber Sheet(CFS), a kind of high strength fiber, for a repair and reinforcement method of concrete structures. The experimental program included tests of flexural beams different in wrapping method and amount of CFS. The beams were subjected to monotonic loading. Although the flexural strength for concrete members increases with wrapping methods of CFS., the reduction factor due to the distribution, amount bond of CFS should be completely examined. This study approached the effectiveness and application of CFS, along with reinforcement effects of CFS on reinforced concrete beams through tests. Test results indicated that the increase in the number of CFS layer caused the increase in strength of beams in strength.

  • PDF

An Experimental Study on the Splice of Reinforcement Embedded in High Performance Hybrid Fiber Reinforced Cementitious Composites (하이브리드 섬유를 사용한 고인성 섬유보강 시멘트 복합체내의 철근이음에 관한 실험적 연구)

  • Jeon Esther;Yang Il-Seung;Han Byung-Chan;Seo Soo-Yeon;Yoon Seung-Joe;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.319-322
    • /
    • 2005
  • Experimental results on splice strength of concrete and hybrid fiber reinforced cementitious composite are reported. Two series of tests, with six specimens each, were carried out. The research parameters were: bar diameter(D16, D22), lap splice length(50, 75, 100$\%$). The current experimental results demonstrated clearly that the use of hybrid fibers in cementitious matrixes increases significantly the splice strength of reinforcing bars in tension. Also, the presence of fibers increased the number of cracks formed around the spliced bars, delayed the growth of the splitting cracks, and consequently, improved the ductility of bond failure.

  • PDF

Molecular Dynamic Simulations of the Phase Transition of $\alpha-quartz$ and $\alpha-quartz-type$-type $GeO_2$ under High Pressure (고압력하에서의 $\alpha-quartz$$\alpha-quartz$$GeO_2$의 상전이에 관한 분자동력학시뮬레이션)

  • ;;;;河村雄;Zenbe-e Nakagawa
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.713-721
    • /
    • 1997
  • Molecular dynamic (MD) simulations with new interatomic potential function including the covalent bond were performed on the phase transition of $\alpha$-quartz-type GeO2 under high pressure. The optimized crystal structure and the pressure dependence of the lattice constant showed higher reproducibility than the previous models and were in very good agreement with the experimental data. A phase transition of $\alpha$-quartz and $\alpha$-quartz-type GeO2 by simulation was found approximately 24 GPa and 6-7 GPa, respectively. This phase transition involved an abrupt volume shrinkage and showed 4-6 coordination mixed structure with the increasing in the coordination number of cation.

  • PDF

A Study on the Shape of Beam Attached CFT inner-side for Developing Column's Performance (콘크리트충전 강관기둥의 성능향상을 위한 내면부착 beam의 형상 연구)

  • Lee, Dong-Un;Yun, Hyug-Gee;Kim, Dea-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.21-22
    • /
    • 2015
  • The CFT(Concrete Filled Tube) system has been developed to behave well in a structural performance such as stiffness, stress, ductility, fire resistance that is derived from its mechanical advantages of composite structure. There were number of studies about unprotected CFT columns for improving their fire resistance through reinforcing bars or plates being placed inside the steel tube. It was also known that reinforcing plates of flat type need stiffeners in a certain distance to avoid their buckling failure so it cost as much as their using consequentially. This paper is planned to test the work of beam elements attached inner side of CFT depending on its shape. More discussions on beam's design could be followed after some fire tests accordingly conducted within this project.

  • PDF

Design of the Symmetrical and Non-symmetrical Interdigitated Three-Line Four-port Microstrip Line Couplers in an Inhomogeneous Medium (비균질 매질내에서 대칭 및 비대칭구조를 갖는 3선 4포트 스트맆선 결합회로의 설계)

  • 진연강
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.6
    • /
    • pp.287-295
    • /
    • 1985
  • Analysis and design procedures for the symmetrical and non-symmetrical interdigitated four-port microstrip couplers conssiting of symmetrical three lines is presented. The configuration is simple and a lesser number of bond wires are requires as compared to the four-line couplers which are used. Physical dimensions of 3. 6 and 10dB couplers with substrates having typical dielectric constant values of 2.55 and 10 can be found by using the tables and charts.

  • PDF

Investigation of a Method Measuring Bond에s Work Index of Korean Kaolin by Laboratory Ball Mill (소형 Ball Mill에 의한 고령토의 분쇄 일지수 측정방법의 검토)

  • 심철호;강용식;서태수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.47-55
    • /
    • 1987
  • The purpose of this work is to establish the basic calibration data for the efficiency of grinding by investigating the Bond's Work Index employing Korean Kaolin as a reference mateial with the laboratory-scale ball mill. A small ordinary ball mill has a dimension of 133 inside diameter and 144mm long. The analysis of the experimental results in this work sets up a equivalent calibration method with the laboratory-scale ball mill to those with special mill. The theoretical expression, derived from the rate equation proposed by Miwa, is obtained to anticipitate the stable revolution number for the next grinding cycle. The proposed equation is more systematic and acurate than lshihara's empirical equation is more systematic and acurate than lshihara's empirical equation for the measurement of gindability of a ball mill.

  • PDF

VHF-PECVD OF Ti/TiN WITH SILANE REDUCTION PROCESS

  • Mizuno, Shigeru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.350-356
    • /
    • 1996
  • This paper presents VHF-Plasma Enhanced Chemical Vapor Deposition (VHF-PECVD) of Ti/TiN with silne reduction process, using $TiCl_4$ source. VHF plasma, which is denser than a conventional RF plasma, produces a large number of radicals. Silane reduction process, which supplies silane radicals, more promotes dissociation of Ti-Cl bond than a conventional hydrogen reduction process. therefore, the VHF-PECVD with silane reduction process forms high quality Ti/TiN films, which have low level of Cl content(<0.2 at.%). In result, the resistivity for Ti or TiN is less than 200$\mu$$\Omega$cm. The surface morphology of Ti film is very smooth. The structure of TiN film is amorphous. Furthermore, excellent step coverage for the films is obtained.

  • PDF

Comparison between Acid and Heat Treatment for Capacity Enhancement of RuO2/MWNT Composite Electrode Materials for Ultracapacitor (울트라캐패시터용 RuO2/MWNT 복합 전극재료의 용량개선을 위한 산처리 및 열처리 효과 비교)

  • Kim, Yong-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we compared two methods(an acid treatment in strong acid reflux and a heat treatment in air atmosphere) for hydrophilic surface treatment of multi-walled carbon nanotubes(MWNT) to enhance the capcity of $RuO_2$/MWNT composite electrode materials for ultracapacitor. Both treatments generated a number of defects on the surface of MWNT by the breakage of $\pi$ bond in graphene layer at which carboxyl groups were introduced. However, the degree of hydrophilicity generated by strong acid treatment was higher than that by heat treatment in air, which was revealed by the quantitative measurement of surface carboxyl groups by using Boehm titration. The increased hydrophilicity save rise to an improved dispersity of $RuO_2$ nanoparticles on MWNT. Finally, the improved dispersity resulted in the capacity enhancement of composite electrode materials for ultracapacitor.

Capacity Change of Supercapacitor by Surface Treatment of Carbon Nanotubes (카본 나노튜브의 표면 처리에 의한 수퍼캐패시터 용량 변화)

  • Kim, Yong-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.532-536
    • /
    • 2009
  • In this study, the capacity change of supercapacitor was investigated by surface treatments of carbon nanotubes as electrode materials with various methods, such as ball-milling, $KMnO_4$ and $H_2SO_4/HNO_3$ acid mixture. Surface treatments generated a number of defects on the surface of carbon nanotubes by attacking on $\pi$ bond in graphene layer, at which carboxyl groups were introduced. These hydrophilic groups could enhance the capacity by increasing the wettability of carbon nanotube surfaces. However, a drawback of the surface treatment was the decrease of conductivity by the loss of conduction path in graphene layer due to the defect formation. The surface treatment condition should be therefore optimized between hydrophilicity increase and conductivity decrease.