• Title/Summary/Keyword: Bond Model

Search Result 762, Processing Time 0.023 seconds

Bond-Slip Model of Interface between Concrete Structures and CFRP Sheets (탄소섬유시트와 콘크리트 구조물의 부착-슬립 모델)

  • Kang, Suk-Hwa;Kim, Ho-Jin;Nam, Jin-Won;Lee, Woo-Cheol;Yoo, Yong-Ha;Byun, Keun-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.113-116
    • /
    • 2006
  • In this study, new bond-slip model is proposed. The proposed bond-slip model which has bilinear ascending regions and exponential descending region by modifying the conventional bilinear bond-slip model has been verified. Then, result by finite element analyses using interface element implemented with bond-slip model compared well with those of existing experiment researches on bond-slip models. It is shown that bond strength and effective bond length predicted by the bond-slip model and finite element analysis is good agreement with those of pull tests.

  • PDF

Bond-Slip Model of Interface between CFRP Sheets and Concrete Beams Strengthened with CFRP (탄소섬유시트로 보강된 콘크리트보의 경계면 부착-슬립모델)

  • Kim, Sung-Bae;Kim, Jang-Ho Tay;Nam, Jin-Won;Kang, Suk-Hwa;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.477-486
    • /
    • 2008
  • External bonding of carbon fiber reinforced plastic sheets has recently emerged as a popular method for strengthening reinforced concrete structures. The behavior of CFRP-strengthened RC structure is often controlled by the behavior of the interface between CFRP sheets and concrete. In this study, a review of models on bond strength, bond-slip, and interfacial stresses has been first carried out. Then a new bond-slip model is proposed. The proposed bond-slip model has bilinear ascending regions and exponential descending region derived from modifications mode on the conventional bilinear bond-slip model. The comparison of the results with those of existing experiment researches on bond-slip models indicate good agreements.

A new reinforcing steel model with bond-slip

  • Kwak, H.G.;Filippou, F.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.299-312
    • /
    • 1995
  • A new reinforcing steel model which is embedded inside a concrete element and also accounts for the effect of bond-slip is developed. Unlike the classical bond-link or bond-zone element using double nodes, the proposed model is considering the bond-slip effect without taking double nodes by incorporation of the equivalent steel stiffness. After calculation of nodal displacements, the deformation of steel at each node can be found through the back-substitution technique from the first to the final steel element using a governing equation constructed based on the equilibrium at each node of steel and the compatibility condition between steel and concrete. This model results in significant savings in the number of nodes needed to account for the effect of bond-slip, in particular, when the model is used for three dimensional finite element problems. Moreover a new nonlinear solution scheme is developed in connection with this model. Finally, correlation studies between analytical and experimental results and several parameter studies are conducted with the objective to establish the validity of the proposed model.

An Analytical Model Proposal Considering Different Surface Type of Bond Behavior between GFRP Rebar and Concrete (GFRP 보강근의 외피형상을 고려한 부착 해석모델 제안)

  • Park, Ji-Sun;Song, Tae-Hyeob;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2019
  • The bond analysis model equation was proposed through the regression analysis of the experimental values of bond behavior for each rebar. In order to verify the appropriateness of the bond analysis model equation, the bond behaviors calculated by the proposed bond analysis model, BPE model and CMR model were compared with experimental values. The proposed bond model showed the closest behavior to the experimental values when compared to other analysis models. The former models can not consider the different properties of GFRP rebar according to composed materials, mixing and manufacturing method and the latter has limitation to express the relationships between bond behavior because of derived formula by numerical analysis. This study proposed the analytical model different considering bond mechanism according to surface type. In order to verity the appropriateness of the bond analytical model, the bond behaviors calculated by the proposed bond analytical model, BPE model and CMR model were compared with experimental values. The proposed bond model showed the closest behavior to the experimental values when compared to other analysis models.

Forecasting Government Bond Yields in Thailand: A Bayesian VAR Approach

  • BUABAN, Wantana;SETHAPRAMOTE, Yuthana
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.3
    • /
    • pp.181-193
    • /
    • 2022
  • This paper seeks to investigate major macroeconomic factors and bond yield interactions in Thai bond markets, with the goal of forecasting future bond yields. This study examines the best predictive yields for future bond yields at different maturities of 1-, 3-, 5-, 7-, and 10-years using time series data of economic indicators covering the period from 1998 to 2020. The empirical findings support the hypothesis that macroeconomic factors influence bond yield fluctuations. In terms of forecasting future bond yields, static predictions reveal that in most cases, the BVAR model offers the best predictivity of bond rates at various maturities. Furthermore, the BVAR model has the best performance in dynamic rolling-window, forecasting bond yields with various maturities for 2-, 4-, and 8-quarters. The findings of this study imply that the BVAR model forecasts future yields more accurately and consistently than other competitive models. Our research could help policymakers and investors predict bond yield changes, which could be important in macroeconomic policy development.

Damage Analysis of Reinforced Concrete Columns under Cyclic Loading

  • Lee, Jee-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.67-74
    • /
    • 2001
  • In this study, a numerical model for the simulation of reinforced concrete columns subject to cyclic loading is presented. The model consists of three separate models representing concrete, reinforcing steel bars and bond-slip between a reinforcing bar and ambient concrete. The concrete model is represented by the plane stress plastic-damage model and quadrilateral finite elements. The nonlinear steel bar model embedded in truss elements is used for longitudinal and transverse reinforcing bars. Bond-slip mechanism between a reinforcing bar and ambient concrete is discretized using connection elements in which the hysteretic bond-slip link model defines the bond stress and slip displacement relation. The three models are connected in finite element mesh to represent a reinforced concrete structure. From the numerical simulation, it is shown that the proposed model effectively and realistically represents the overall cyclic behavior of a reinforced concrete column. The present plastic-damage concrete model is observed to work appropriately with the steel bar and bond-slip link models in representing the complicated localization behavior.

  • PDF

Bond Analysis of Ribbed Reinforcing Bars

  • Park, Oan-Chul
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.19-25
    • /
    • 2001
  • A simple expression to predict bond strength of reinforcing bars with rib deformation to the surrounding is derived for the case of splitting bond failure. Finite element analysis is used to model the confining behavior of concrete cover. The roles of the interfacial properties, specifically, the friction coefficient, cohesion, the relative rib area and the rib face angle are examined. Values of bond strength obtained using the analytical model are in good agreement with the bond test results from the previous studies. The analytical model provides insight into interfacial bond mechanisms and the effects of the key variables on the bond strength of deformed bars to concrete. Based on the comparison between the analytical results and the test results, the values of cohesion, coefficient of friction, and the effective rib face angle are proposed.

  • PDF

Finite element parametric study of RC beams strengthened with carbon nanotubes modified composites

  • Irshidat, Mohammad R.;Alhusban, Rami S.
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.131-141
    • /
    • 2021
  • This paper aims at investigating the capability of different FRP/concrete interface models to predict the effect of carbon nanotubes on the flexural behavior of RC beams strengthened with CFRP. Three different interfacial bond models are proposed to simulate the adhesion between CFRP composites and concrete, namely: full bond, nonlinear spring element, and cohesive zone model. 3D Nonlinear finite element model is developed then validated using experimental work conducted by the authors in a previous investigation. Cohesive zone model (CZM) has the best agreement with the experimental results in terms of load-deflection response. CZM is the only bond model that accurately predicted the cracks patterns and failure mode of the strengthened RC beams. The FE model is then expanded to predict the effect of bond strength on the flexural capacity of RC beams strengthened with externally bonded CNTs modified CFRP composites using CZM bond model. The results reveal that the flexural capacity of the strengthened beams increases with increasing the bond strength value. However, only 23% and 22% of the CFRP stress and strain capacity; in the case of full bond; can be utilized before failure.

A Study on the Transient State of Deep Bed Filtration by the Network Model (Network 모델을 이용한 입상여과공정의 전이상태 해석에 대한 연구)

  • Choo, Changupp
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.224-231
    • /
    • 2006
  • Collection efficiencies and pressure drops for the removal of small particles from dilute liquid suspensions by granular bed filter were calculated using network model. The network model is composed of a number of nodes connected with cylindrical bond and particles are deposited on the bond surface. The collection efficiency of each cylindrical bond was predicted using unit cell model corresponding to the pore volume of cylindrical pore both at the initial and transient states. Deposited particles on the collector surface may act as additional collector and reduce the pore size of the collector. As a result, the collection efficiency was improved and pressure drop increased with deposition. Even though the stochastic nature of network requires a large number of simulation work, the model proposed in this study can be used in investigating collection efficiency and pressure drop.

  • PDF

Verification of Parameters Influencing Bond Strength between Fiber-Reinforced Polymer Laminates and Concrete (연속섬유(FRP)시트와 콘크리트의 부착강도 영향 요인 검증)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.414-423
    • /
    • 2020
  • Fiber-reinforced polymer (FRP) laminate sheets, which are lightweight with high strength, are commonly used to reinforce concrete structures. The bonding strength is vital in structural design. Therefore, experiments and analytical studies with differing variables (concrete compressive strength and tensile strength, the elastic modulus of concrete and FRP, thickness of concrete and FRP, width of concrete and FRP, bond length, effective bond length, fracture energy, maximum bond stress, maximum slip) have been conducted to obtain an accurate numerical model of the bond strength between an FRP sheet and concrete. Although many models have been proposed, no validated model has emerged that could be used easily in practice. Therefore, this study analyzed the parameters that influence the bond strength that were used in 23 of the proposed models (Khalifa model, Iso model, Maeda model, Chen model, etc.) and compared them to the test results of 188 specimens via the numerical results of each model. As a result, an easy-to-use practical model with a simple and high degree of expression was proposed based on the Iso model combined with the effective bond length model that was proposed by Holzenkӓmpfer.