• Title/Summary/Keyword: Bolus

Search Result 435, Processing Time 0.029 seconds

Comparison of Three Different Helmet Bolus Device for Total Scalp Irradiation (Total Scalp의 방사선 치료 시 Helmet Bolus 제작방법에 관한 연구)

  • Song, Yong-Min;Kim, Jong-Sik;Hong, Chae-Seon;Ju, Sang-Gyu;Park, Ju-Young;Park, Su-Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • Purpose: This study evaluated the usefulness of Helmet bolus device using Bolx-II, paraffin wax, solid thermoplastic material in total scalp irradiation. Materials and Methods: Using Rando phantom, we applied Bolx-II (Action Products, USA), paraffin wax (Densply, USA), solid thermoplastic material (Med-Tec, USA) on the whole scalp to make helmet bolus device. Computed tomography (GE, Ultra Light Speed16) images were acquired at 5 mm thickness. Then, we set up the optimum treatment plan and analyzed the variation in density of each bolus (Philips, Pinnacle). To evaluate the dose distribution, Dose-homogeneity index (DHI, $D_{90}/D_{10}$) and Conformity index (CI, $V_{95}/TV$) of Clinical Target Volume (CTV) using Dose-Volume Histogram (DVH) and $V_{20}$, $V_{30}$ of normal brain tissues. we assessed the efficiency of production process by measuring total time taken to produce. Thermoluminescent dosimeters (TLD) were used to verify the accuracy. Results: Density variation value of Bolx-II, paraffin wax, solid thermoplastic material turned out to be $0.952{\pm}0.13g/cm^3$, $0.842{\pm}0.17g/cm^3$, $0.908{\pm}0.24g/cm^3$, respectively. The DHI and CI of each helmet bolus device which used Bolx-II, paraffin wax, solid thermoplastic material were 0.89, 0.85, 0.77 and 0.86, 0.78, 0.74, respectively. The result of Bolx-II was the best. $V_{20}$ and $V_{30}$ of brain tissues were 11.50%, 10.80%, 10.07% and 7.62%, 7.40%, 7.31%, respectively. It took 30, 120, 90 minutes to produce. The measured TLD results were within ${\pm}7%$ of the planned values. Conclusion: The application of helmet bolus which used Bolx-II during total scalp irradiation not only improves homogeneity and conformity of Clinical Target Volume but also takes short time and the production method is simple. Thus, the helmet bolus which used Bolx-II is considered to be useful for the clinical trials.

  • PDF

Comparison of Single-Dose Toxicity by Intravenous Infusion or Bolus Injection with CKD-602, a Camptothecin Anticancer Agent in Rats (II): Hematological and Serum Biochemical, and Histopathological Changes

  • Kim, Choong-Yong;Yang, Byung-Chul;Kim, Joon-Kyum;Kim, Jong-Choon;Kim, Yong-Beom;Kang, Boo-Hyon;Han, Sang-Seop
    • Toxicological Research
    • /
    • v.20 no.4
    • /
    • pp.381-389
    • /
    • 2004
  • The toxicity of CKD-602 was investigated at doses of 3, 9, and 27 mg/kg in rats, when the same total dose of CKD-602 was administered over 24 hr-continuous infusion or bolus injection. At 3 and 9 mg/kg, the 24-hr infusion group showed a more decreased WBC count on day 3, compared with the bolus group. Administration of CKD-602 caused more toxic effects such as the significant decreases of RBC counts, hematocrit, hemoglobin, and platelet count on day 7 post-administarion in the 24-hr infusion group than in the bolus group. Administration of CKD-602 also caused histopathological changes such as extramedullary hemopoiesis of liver and spleen, hyperplasia of femoral bone marrow, and caecal dilation. These toxic effects were more severe in the 24-hr infusion group than in the bolus injection group, indicating that the toxicity of CKD-602 may be dependant upon the duration of administration.

Evaluation of Bolus Applicability through Dose Evaluation According to 3D Print Materials (3D 프린트 소재에 따른 선량평가를 통한 볼루스 적용성 평가)

  • Kim, Jung-Hoon;Lee, Deuk-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.241-246
    • /
    • 2019
  • Among the 4th Industrial Revolution technologies, evaluated bolus applicability through dose assesment according to the materials of 3D printing technology. Dose assesment was using MCNPX which was applied Monte Carlo method and 3D print materials were ABS, PC and PLA. Thus, the thickness with the same effect as the bolus 10 mm was found to be ABS 10 mm, PC 9 mm and PLA 9 mm for the 6 MeV electron. For 6 MV X-ray, ABS 11 mm, PC 10 mm and PLA 9 mm were shown. This study showed that tissue equivalent materials made from 3D printer materials can replace bolus.

A Study on the Necessary Number of Bolus Treatments in Radiotherapy after Modified Radical Mastectomy (변형 근치적 유방절제술 후 방사선치료에서 볼루스 적용횟수에 대한 고찰)

  • Hong, Chae-Seon;Kim, Jong-Sik;Kim, Young-Kon;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.113-117
    • /
    • 2006
  • Purpose: Post-mastectomy radiotherapy (PMR) is known to decrease loco-regional recurrence. Adequate skin and dermal dose are achieved by adding bolus. The more difficult clinical issue is determining the necessary number of bolus treatment, given the limits of normal skin tolerance. The aim of this study is to evaluate the necessary number of bolus treatment after PMR in patients with breast cancer. Materials and Methods: Four female breast cancer patients were included in the study. The median age was 53 years(range, $38{\sim}74$), tumor were left sided in 2 patients and right sided in 2patients. All patients were treated with postoperative radiotherapy after MRM. Radiotherapy was delivered to the chest wall (C.W) and supraclavicular lymph nodes (SCL) using 4 MV X-ray. The total dose was 50 Gy, in 2 Gy fractions (with 5 times a week). CT was peformed for treatment planning, treatment planning was peformed using $ADAC-Pinnacles^3$ (Phillips, USA) for all patients without and with bolus. Bolus treatment plans were generated using image tool (0.5 cm of thickness and 6 cm of width). Dose distribution was analyzed and the increased skin dose rate in the build-up region was computed and the skin dose using TLD-100 chips (Harshaw, USA) was measured. Results: No significant difference was found in dose distribution without and with bolus; C.W coverage was $95{\sim}100%$ of the prescribed dose in both. But, there was remarkable difference in the skin dose to the scar. The skin dose to the scar without and with bolus were $100{\sim}105%\;and\;50{\sim}75%$. The increased skin dose rates in the build-up region for Pt. 1, Pt. 2. Pt. 3 and Pt. 4 were 23.3%, 35.6%, 34.9%, and 41.7%. The results of measured skin dose using TLD-100 chips in the cases without and with bolus were 209.3 cGy and 161.1 cGy, 200 cGy and 150.2 cGy, 211.4 cGy and 160.5 cGy, 198.6 cGy and 155.5 cGy for Pt. 1, Pt. 2, Pt. 3, and Pt. 4. Conclusion: It was concludes through this analysis that the adequate number of bolus treatments is 50-60% of the treatment program. Further, clinical trial is needed to evaluate the benefit and toxicity associated with the use of bolus in PMR.

  • PDF

Implementation of Water Bolus in Patient with Large Tissue Defect (조직결손이 큰 환자에서 물 볼루스의 적용에 관한 고찰)

  • Park, Hyo-Kuk;Lee, Sang-Kyu;Yoon, Jong-Won;Cho, Jeong-Hee;Kim, Dong-Wook;Kim, Joo-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • Purpose: To demonstrate that water bolus in the patient surface can decrease the dose inhomogeneity by patient surface large tissue defect when the surface is in an electron-beam field. And We tried to find a easy way to water control. Methods and Materials: To demonstrate the use of water bolus in the irregular surface clinically, the case of a patient with myxofibrosarcoma of the chest wall who was treated with electrons. We obtained dose distribution using missing tissue option of PINACLE 6.2b (ADAC, USA). We fabricate a Mev-green for water bolus in patient with defect of tissue. Then put the water bolus which is vinyl packed water into the designed Mev-green. We peformed CT scan with CT-simulator. Three-dimensional (3D) dose distributions with and without water bolus in the large irregular chest wall were calculated for a representative patient. Resulting dose distributions and dose-volume histograms of water bolus were compared with missing tissue option and non bolus plans. We fabricate a new water control device. Results: Controlled Water bolus markedly decrease the dose heterogeneity, and minimizes normal tissue exposure caused by the surface irregularities of the chest wall mass. In the test case, The non bolus plan has a maximum target dose of 132%. After applying water bolus, the maximum target dose has been reduced substantially to 110.4%. The maximum target dose was reduced by 21.6% using this technique. Conclusion: The results showed that controlled water bolus could significantly improve the dose homogeneity in the PTV for patients treated with electron therapy using water control device. This technique may reduce the incidence of normal organ complications that occur after electron-beam therapy in irregular surface. And our new device shows handiness of water control.

  • PDF

Individual Differences of the Chewing Speed and Chews per Bolus in Rumination Behaviour of Cattle (소의 반추행동에 있어서 저작속도와 괴움질 식괴당 저작횟수의 개체차)

  • ;Minoru Otha
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.3
    • /
    • pp.158-162
    • /
    • 1989
  • This experiment was conducted to evaluate individual difference of chewing speed and chews per bolus duing the rumination using twenty three heads of grazing cattle and thirty six heads of barn feeding cattle. Rumination behaviour was measured and recorded by the masster EMC telemeter and visual observation. The chewing speed (chews/lOOsec) was significantly different individually (C.V. 13.0-14.5 %) among the variable aged group (1-60 months), but that of same aged group showed lower difference (C.V. 4.5 %). The chews per bolus showed even larger individually difference than the chewing speed, so the variable aged group (1-60 months) resulted the 15.5-16.2 %of C.V.and the same aged group showed the 9.5 % of C.V. Under 12 month aged cattle showed more rapid chewing speed than older aged cattle. The chewing speed changed with the growth of cattle, but the chews per bolus did not show any relationship with age, so it is regarded as the individually characteristic pattern.

  • PDF

Various Methods to Increase the Skin Dose on 9MeV Electron (9 MeV 전자선 치료에서 표면선량 증가의 방법)

  • Ji, Gwang-Su;Yu, Dae-Hyeon;Kim, Jae-Hyu;Ji, Yeong-Hun;Jeong, Hyeon-U
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.3 no.1
    • /
    • pp.85-89
    • /
    • 1989
  • Dose distribution was evaluated under vaseline and thin lead used as surface bolus, in case with scattering filter and without, for 9-MeV electron using chambers in water phantom. The results were as follows: 1. The skin dose can be remarkably increased with thin lead bolus than with convensional bolus. 2. The skin dose over $110\%$ in the 0.6mm thin lead bolus compared with the maximum dose in normal irradiation, so skin burn or any other complications may be occured in patients.

  • PDF

Resistance to Cerebrospinal Fluid Outflow Measured by Bolus Injection Method in Normal Adults (Bolus Injection 방법을 이용해서 측정한 정상 성인의 뇌척수액 배출저항)

  • Kim, Eun-Young;Park, Hyun Sun;Chung, Chong Kweon;Jin, Tae Kyoung;Kim, Jae Joong;Park, Hyung Chun
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.9
    • /
    • pp.1209-1214
    • /
    • 2000
  • Objectives : The measurement of resistance to cerebrospinal fluid outflow($R_o$) can clearly delineate cerebrospinal fluid dynamics in patients with ventricular dilatation and can help in selecting patients to undergo shunt placement. With regards to type of infusion method, bolus injection is known to be more practical and safer than continuous infusion. The purpose of this study was to obtain $R_o$ of normal adults using lumbar bolus injection method. Material and Methods : Twenty adults aged 25 to 52 years were studied using lumbar bolus injection method. Fifteen patients with hemifacial spasm and five with cerebral concussion underwent $R_o$ measurement under propofol general anesthesia and local anesthesia, respectively. Results : The mean values of $R_o$ determined 1 minute and 2 minutes after bolus injection were $4.8{\pm}1.7$ and $4.4{\pm}1.6mmHg/ml/min$, respectively. There was no significant difference of $R_o$ between propofol general anesthesia group and local anesthesia group. Two patients showed $R_o$ greater than 6mmHg/ml/min. One patient revealed unexpectedly high level of $R_o$ due to severe spinal stenosis. Conclusion : Mean Ro in this study was higher than that of Shapiro's study. Borderline Ro near 6mmHg/ml/min should be regarded with caution and compared with clinical symptoms and results of other studies. Patients with severe spinal stenosis should be evaluated with caution.

  • PDF

The Consideration of Bolus Effects of Games Attached on Lesion area (환부 부착용 거즈의 Bolus Effect에 관할 고찰)

  • Park JuYoung;Ju SangKyu;Park YoungChul;Han YoungYi;Shin EunHyuk;Park YongHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.51-56
    • /
    • 2004
  • The aim of this study is to evaluate the effect of skin dose and PDD by using wounds protecting gauzes or Vaselinespread gauzes. And it was studied that the possibility to substitute custom bolus into gauzes. 4MV photon (CL600C, varian, US), Polystyrene Phantom (30(W) X30(L) X 30(H)) with Markus chamber(PTW, US) were used for dose measurement. This study was distinguished natural gauzes and spread over Vaseline gauzes. We gave variety to the gauze thickness at 5, 10 and 15 sheets respectively. For comparison between using bolus and not that, we had used 1.0 cm thickness bolus so that analyzed surface dose and PDD at the same conditions above mentioned. When maximum point was defined as reference point, surface dose was measured as $35\%$ in open beam. When the gauzes were attached to surface as 5, 10 and 15 sheets, surface dose were increased as 69, 80 and $91\%$ respectively according to thickness of gauzes. When spread over Vaseline gauzes were attached to surface as 5, 10 and 15 sheets, surface dose were increased respectively as 98, 100 and $98\%$ according to thickness of gauzes. Also when 0.5 cm bolus and 5 sheets gauzes were composed, surface dose was measured as $98\%$. The gauzes that were attached to skin surface in radiation therapy had been scattering material and contributed increasing surface dose without variation of percentage depth dose. However, if we want to delivery much dose to skin surface then we have to apply many sheets of gauzes to skin surface. Although we get easy that result by bolus or spread over Vaseline gauzes, we have to revise percentage depth dose at calculation. Therefore, if we find pertinent conditions based on measured data that are considered skin dose and patient setup efficiency, to replace custom bolus with gauzes will be helpful to efficient treatment.

  • PDF