• Title/Summary/Keyword: Boltzmann equation

Search Result 221, Processing Time 0.041 seconds

Experimental Study of Emissivity with the Variation of Temperature and Shape Factor Using the Radiation Apparatus (복사 장치를 이용한 온도와 형상계수의 변화에 따른 방사율에 관한 실험적 연구)

  • Kim, Chung-Rae;Jeong, Byung-Cheol;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.135-140
    • /
    • 2005
  • Voltage of radiometer is measured experimentally using the radiation apparatus in each case of iron- and copper-plates as specimen heating device. The length between radiometer and conical shield and the temperature of specimen heating device are considered as variables. The length between radiometer and conical shield controls the amount of radiation from the specimen heating device. Emissivity for both iron-and copper-plates are calculated by using Stefan-Boltzmann equation. One of results shows that emissivity for both materials increases as the length between radiometer and conical shield increases.

  • PDF

The measurement of electron drift velocity and analysis of transport coefficients in SF$_6$+$N_2$ gas (SF$_6$+$N_2$혼합기체의 전자 이동속도 측정 및 수송계수 해석)

  • 하성철;하영선
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.462-472
    • /
    • 1994
  • In this paper, electron drift velocity is experimentally measured in SF$_{6}$+N$_{2}$ Gas by induced cur-rent method and quantitaive production of electron transport coefficient is calculated by backward-prolongation of Boltzmann equation. Then electron energy distribution function and attachment coefficients are calculated. This paper can use the electron drift velocity by experimentally and the electron transport coefficient by calculated as a basic data of mixed Gas by comparing and investigating.g.

  • PDF

Characteristics of Electron Transport in $SiH_4$ Gas used by MCS-BEq Algorithm (MCS-BEq 알고리즘에 의한 $SiH_4$ 기체의 전자수송특성)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.159-162
    • /
    • 2006
  • In this paper energy distribution function in $SiH_4$ has been analysed over the E/N range 0.5${\sim}$300Td and Pressure value 0.5, 1.0, 2.5 Torr by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, diffusion coefficient, electron ionization, mean energy and the electron energy distribution function. The electron energy distribution function has been analysed in $SiH_4$ at E/N=30, 50Td for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values.

  • PDF

A study on the electron energy diffusion function of the sulphur hexaflouride ($SF_6$ 가스의 전자에너지 분포함수에 관한 연구)

  • 김상남;유회영;서상현;박동화;하성철
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.134-139
    • /
    • 1996
  • The electron energy distributions function were analysed in sulphur hexaflouride at E/N : 500~800(Td) for a case of non-equilibrium ion in the mean electron energy. This paper describes the electron transport characteristics in SF$_{6}$ gas calculated for range of E/N values from 150~800(Td) by the Monte Carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters. The results gained that the value of an electron swarm parameter such as the electron drift velocity, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients agree with the experimental and theoretical for a range of E/N. The properties of electron avalanches in an electron energy non-equilibrium region.n.

  • PDF

A DSMC Technique for the Analysis of Chemical Reactions in Hypersonic Rarefied Flows (화학반응을 수반하는 극초음속 희박류 유동의 직접모사법 개발)

  • Chung C. H.;Yoon S. J.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.63-70
    • /
    • 1999
  • A Direct simulation Monte-Carlo (DSMC) code is developed, which employs the Monte-Carlo statistical sampling technique to investigate hypersonic rarefied gas flows accompanying chemical reactions. The DSMC method is a numerical simulation technique for analyzing the Boltzmann equation by modeling a real gas flow using a representative set of molecules. Due to the limitations in computational requirements. the present method is applied to a flow around a simple two-dimensional object in exit velocity of 7.6 km/sec at an altitude of 90 km. For the calculation of chemical reactions an air model with five species (O₂, N₂, O, N, NO) and 19 chemical reactions is employed. The simulated result showed various rarefaction effects in the hypersonic flow with chemical reactions.

  • PDF

A Study on Characteristics of The $CF_3I$-Xe Mixtures gases in a Plasma Discharge Simulation (플라즈마 방전 시뮬레이션에 의한 $CF_3I$-Xe 혼합 가스에서의 물성 특성 연구)

  • Shim, Eung-Won;Tuan, Do Anh;Jeon, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1582-1583
    • /
    • 2011
  • Recently, it has been found that trifluoroiodomethane ( $CF_3I$) gas can replace $SF_6$ gas as a prospective substitute gas. For quantitative understanding of gas discharge phenomena, we should know electron collision cross sections and electron transport coefficients. Using electron collision cross sections of $CF_3I$ and Xe, we calculated elecron drift velocity, longitudinal coefficient, effective ionization coefficient in $CF_3I$-Xe mixtures using a two-term approximation of the Boltzmann equation. We also compared the electron transport coefficients in pure gas and those of 10%, 20%, 50%, and 70% $CF_3I$-Xe mixture gases. The present data may be showed appropriate ratios of $CF_3I$-Xe mixture gas for replacing the $SF_6$ gas.

  • PDF

Electron Collision Cross Section of Electron Transport Coefficients in Hydrogen-Argon Mixtures ($H_2$ + Ar 혼합기체의 전자수송계수에서의 전자충돌 단면적)

  • Jo, Doo-Yong;Phan, Thi Lan;Jeon, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1540-1541
    • /
    • 2011
  • We calculated the electron transport coefficients in $H_2$+Ar gas calculated E/N values 0.01 ~ 1 Td by the Boltzmann equation method. This study gained the values of the electron swarm parameters such as the electron drift velocity and the transverse diffusion coefficients for $H_2$+Ar gas at a range of E/N. The transport coefficient W and Dt/u have been calculated in mixtures of 0.5% and 4% hydrogen in argon. All values were made at 293 K.

  • PDF

Distribution Function and Drift Velocities in Mixtures of SF6 and Ar (SF6-Ar 혼합기체의 전자분포함수와 이동속도)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.146-150
    • /
    • 2010
  • Distribution Function and Drift velocities for electrons in $SF_6$-Ar mixtures gases used by MCS-BEq algorithm has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and by a Monte Carlo simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight method. The results obtained in this work will provide valuable information on the fundamental behaviors of electrons in weakly ionized gases and the role of electron attachment in the choice of better gases and unitary gas dielectrics or electro negative components in dielectric gas mixtures. The results show that the deduced electron drift velocities agree reasonably well with theoretical for a rang of E/N values.

A study on the electron transport coefficients in $GeH_4$ gas ($GeH_4$기체의 전자수송계수에 관한 연구)

  • Ryu, Sun-Mi;Jeon, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1404_1405
    • /
    • 2009
  • For quantitative understanding of gas discharge phenomena, we should know electron collision cross section. $GeH_4$ is used in many applications with $Si_2H_6$ gas, such as amorphous alloy, a thin film of silicon and solar cell. Therefore, we understand the electron transport characteristics and analysed the electron transport coefficients, the electron drift velocity W, the longitudinal and transverse diffusion coefficient $ND_L$ and $ND_T$, and the ionization coefficient $\alpha$/N in $GeH_4$gas over the E/N range from 0.01 to 1000 Td by two-term approximation of the Boltzmann equation.

  • PDF

Analysis of Insulating Characteristics of Cl2-He Mixture Gases in Gas Discharges

  • Tuan, Do Anh
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1734-1737
    • /
    • 2015
  • Insulating characteristics of Cl2-He mixture gases in gas discharges were analysed to evaluate ability of these gases for using in medium voltage and many industries. These are electron transport coefficients, which are the electron drift velocity, density-normalized longitudinal diffusion coefficient, and density-normalized effective ionization coefficient, in Cl2-He mixtures. A two-term approximation of the Boltzmann equation was used to calculate the electron transport coefficients for the first time over a wide range of E/N (ratio of the electric field E to the neutral number density N). The limiting field strength values of E/N, (E/N)lim, for these binary gas mixtures were also derived and compared with those of the pure SF6 gas.