• Title/Summary/Keyword: Bolt Parts

Search Result 92, Processing Time 0.022 seconds

An Analysis of Plastic Deformation Developed During Interference Fitting of Disk Brake Hub Bolt (디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석)

  • Lee, J.S.;Kwak, S.Y.;Kang, S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.407-411
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit(bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

A Study on Finite Element Modeling of the Structure with Bolted Joints (볼트 체결부를 갖는 구조물의 유한요소모델링에 관한 연구)

  • Yoon, Ju-Chul;Kang, Bum-Soo;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.205-212
    • /
    • 2003
  • In this study, in order to investigate a modeling technique of the structure with bolted joints, four kinds of finite element model are introduced; a solid bolt model, a coupled bolt model, a spider bolt model, and no bolt model. All proposed models take account on prestrained effect and contact behavior of flanges to be joined. Among these models, a solid bolt model, which is modeled by using a 3-D solid element and a surface-to-surface contact element between the head/nut and the flange interfaces, has the best accurate responses compared with the experimental results. In addition, coupled bolt model, which couples the degree of freedom between the head/nut and the flange, shows the best effectiveness and usefulness in view of computational time and memory usage. Finally, the bolt model proposed here is adopted for structural analysis of a large diesel engine of a ship consisting of several parts which is connected by long stay bolts.

Robust Design for Parts of Induction Bolt Heating System (유도가열시스템의 구성부품에 대한 강건설계)

  • Kim, Doo Hyun;Kim, Sung Chul;Lee, Jong Ho;Kang, Moon Soo;Jeong, Cheon Kee
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.10-17
    • /
    • 2021
  • This paper presents the robust design of each component used in the development of an induction bolt heating system for dismantling the high-temperature high-pressure casing heating bolts of turbines in power plants. The induction bolt heating system comprises seven assemblies, namely AC breaker, AC filter, inverter, transformer, work coil, cable, and CT/PT. For each of these assemblies, the various failure modes are identified by the failure mode and effects analysis (FMEA) method, and the causes and effects of these failure modes are presented. In addition, the risk priority numbers are deduced for the individual parts. To ensure robust design, the insulated-gate bipolar transistor (IGBT), switched-mode power supply (SMPS), C/T (adjusting current), capacitor, and coupling are selected. The IGBT is changed to a field-effect transistor (FET) to enhance the voltage applied to the induction heating system, and a dual-safety device is added to the SMPS. For C/T (adjusting current), the turns ratio is adjusted to ensure an appropriate amount of induced current. The capacitor is replaced by a product with heat resistance and durability; further, coupling with a water-resistant structure is improved such that the connecting parts are not easily destroyed. The ground connection is chosen for management priority.

Ultrasonic Phased Array Techniques for Detection of Flaws of Stud Bolts in Nuclear Power Plants

  • Lee, Joon-Hyun;Choi, Sang-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.440-446
    • /
    • 2006
  • The reactor vessel body and closure head are fastened with the stud bolt that is one of crucial parts for safety of the reactor vessels in nuclear power plants. It is reported that the stud bolt is often experienced by fatigue cracks initiated at threads. Stud bolts are inspected by the ultrasonic technique during the overhaul periodically for the prevention of failure which leads to radioactive leakage from the nuclear reactor. The conventional ultrasonic inspection for stud bolts was mainly conducted by reflected echo method based on shadow effect. However, in this technique, there were numerous spurious signals reflected from every oblique surfaces of the thread. In this study, ultrasonic phased array technique was applied to investigate detectability of flaws in stud bolts and characteristics of ultrasonic images corresponding to different scanning methods, that is, sector and linear scan. For this purpose, simplified stud bolt specimens with artificial defects of various depths were prepared.

Behavior and modeling of single bolt lap-plate connections

  • Rex, Clinton O.;Easterling, W. Samuel
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.277-296
    • /
    • 2002
  • A research investigation of single bolt lap-plate connection load-deformation behavior is presented. Each important characteristic of this behavior is evaluated and two methods for analytically approximating the behavior are developed and presented. The first of these methods is a component method in which the behavior of the connection is modeled as a combination of the behavior of the parts. The second method utilizes a number of parametric relationships that relate the connection parameters to coefficients of two non-linear continuous analytical curves. The test results from four independent experimental programs that investigated the behavior of single bolt lap-plate connections are used in the development and verification of these methods.

A Study of Automated Process Planning and Die Design for Multi Former-Bolt Products (다단포머-볼트류 공정 및 금형설계 자동화 시스템 개발)

  • Park, Chul-Woo;Kang, Jung-Hoon;Lee, Jun-Ho;Kim, Chul;Kim, Moon-Saeng;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.29-38
    • /
    • 2003
  • This paper deals with an automated computer-aided process planning and die design system with which designer can determine operation sequences even after only a little experience in process planning and die design of multi former-bolt products by multi-stage former working. The approach is based on knowledge-based rules, and a process knowledge base consisting of design rules is built. Knowledge fur the system is formulated from plasticity theories, empirical results and the empirical knowledge of field experts. Programs for the system have been written in AutoLISP for AutoCAD with a personal computer. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system is composed of four main modules. The process planning and die design module considers several factors, such as the complexities of preform geometry, punch and die profiles, specifications of available multi former, and the availability of standard parts. It can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution and the level of the required forming loads by controlling the forming ratios. The system uses 2D geometry recognition and is integrated with the technology of process planning, die design, and CAE analysis. The standardization of die parts for multi former-bolt products requiring a cold forging process is described. The system developed makes it possible to design and manufacture multi former-bolt products more efficiently.

A Study on Optimum Design Analysis of Bolt Locations for Metal Joint Parts of Railway Composite Bogie Frames using Sub-modeling Method (서브모델링 기법을 이용한 철도차량 복합재 대차프레임의 금속재 체결부 볼트 위치 최적화 해석 연구)

  • Kim, Jun-Hwan;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Jung-Seok
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.19-25
    • /
    • 2010
  • This paper describes the optimum design of bolt locations for metal joint parts of railway bogie frame made of glass fiber/epoxy 4-harness satin woven laminate composite and PVC foam core. The optimum design analysis was done by sub-problem approximation method using Ansys Parameter Design Language(APDL). The sub-modeling method was introduced to conduct the detailed recalculation for the only target parts and reduce calculating time. The structural analysis for composite bogie frame was performed according to JIS E 4207. The results showed that the optimum design analysis using sub-modeling method was able to obtain faster and more precise results than that of the entire model by the control of mesh size for the target parts, and the maximum Von-Mises stress has been reduced in comparison with its original dimensions due to the optimum design of bolt locations.

Corrosion Behavior of the parts of Carbon Steel Bolted GECM(Graphite Epoxy Composite Material)/Al plates (탄소강 볼트 체결된 GECM(Graphite Epoxy Composite Material)/Al 판재의 구성 부재의 부식 거동)

  • Kim, Youngsik;Park, Sujin;Yoo, Youngran
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.232-241
    • /
    • 2012
  • This work focused on corrosion of carbon steel bolted GECM/Al parts in tap water and NaCl solutions. In tap water and NaCl solutions, open circuit potential of GECM and its potentials in a series of carbon steel bolt>Ti>Al became active. Regardless of test materials, open circuit potentials in tap water were noble, and increasing NaCl concentration, its potentials became active. Immersion test of single specimen showed that no corrosion occur in Ti and GECM. In tap water, carbon steel bolt didn't show red corrosion product and in chloride solutions, corrosion rate in 1% NaCl solution was greater than its rate in 3.5% NaCl solution and red corrosion product in 1% NaCl solution was earlier observed than that in 3.5% NaCl solution. It seems that this behavior would be related to zinc-coatings on the surface of carbon stee l bolt. On the other hand, aluminium was corroded in tap water and chloride solutions. Corrosion of aluminium in tap water was due to the presence of chloride ion in tap water by sterilizing process.

Prediction of the Dynamic Characteristics of a Bolt-Joint Plates According to Bolting Conditions (볼트 체결 조건에 따른 두 판재의 동적 특성 예측)

  • Hong Sang-joon;Lee DongJin;Yoo Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1175-1182
    • /
    • 2005
  • General systems have many substructures assembled at joints. The bolted joint is generally used in assembling the mechanical parts. However, there are no effective modeling methods to analyze the dynamic characteristics of bolt jointed structure using the finite element (FE) analysis, especially in case of large area contact. Moreover, the design methods for the appropriate bolt locations and the number of bolts considering the dynamic characteristics are not guided properly. In this study, a proper modeling method is developed to simulate the dynamic characteristics of a structure with the large interfaced area using the cone frusta method and spring elements. The natural frequencies are also controlled by adjusting the bolt-joint location and the number of bolts considering relative distances in mode shapes at the interface of bolt-jointed plates. The Modeling method and the optimized design method are verified based on the experimental and the FE analysis results.

An analysis of plastic deformation occurring by interference fit of disk brake hub bolt (디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석)

  • Lee, J.S.;Kwak, S.Y.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.238-241
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit (bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

  • PDF