This research deals with the nonlocal temperature-dependent dynamic buckling analysis of embedded sandwich micro plates reinforced by functionally graded carbon nanotubes (FG-CNTs). The material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT) in which the size effects are considered using Eringen's nonlocal theory. The differential quadrature (DQ) method in conjunction with the Bolotin's methods is applied for calculating resonance frequency and dynamic instability region (DIR) of structure. The effects of different parameters such as volume percent of CNTs, distribution type of CNTs, temperature, nonlocal parameter and structural damping on the dynamic instability of visco-system are shown. The results are compared with other published works in the literature. Results indicate that the CNTs have an important role in dynamic stability of structure and FGX distribution type is the better choice.
For the first time, the parametric instability characteristics of tow-steered variable stiffness composite laminated (VSCL) cylindrical panels is investigated using B-spline finite strip method (FSM). The panel is considered containing geometrical defects including cutout and delamination. The material properties are assumed to vary along the panel axial length of any lamina according to a linear fiber-orientation variation. A uniformly distributed inplane longitudinal loading varies harmoni-cally with time is considered. The instability load frequency regions corresponding to the assumed in-plane parametric load-ing is derived using the Bolotin's first order approximation through an energy approach. In order to demonstrate the capabili-ties of the developed formulation in predicting stability behavior of the thin-walled VSCL structures, some representative results are obtained and compared with those in the literature wherever available. It is shown that the B-spline FSM is a proper tool for extracting the stability boundaries of perforated delaminated VSCL panels.
Here, the dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates are investigated using finite element procedure. Temperature field is assumed to be a uniform distribution over the plate surface and varied in thickness direction only. Material properties are assumed to be temperature dependent and graded in the thickness direction according to simple power law distribution. For the numerical illustrations, silicon nitride/stainless steel is considered as functionally graded material. The aerodynamic pressure is evaluated based on first-order high Mach number approximation to the linear potential flow theory. The boundaries of the instability region are obtained using the principle of Bolotin's method and are conveniently represented in the non-dimensional excitation frequency-load amplitude plane. The variation dynamic instability width is highlighted considering various parameters such as gradient index, temperature, aerodynamic and mechanical loads, thickness and aspect ratios, and boundary condition.
Al-Toki, Mouayed H.Z.;Ali, Hayder A.K.;Faleh, Nadhim M.;Fenjan, Raad M.
Geomechanics and Engineering
/
v.28
no.5
/
pp.455-461
/
2022
Numerical assessment of the dynamic stability behavior of nonlocal beams rested on elastic foundation has been provided in the present research. The beam is made of fucntional graded (FG) porous material and is exposed to thermal and humid environments. It is also consiered that the beam is subjected to axial periodic mechanical load which especific exitation frequency leading to its instability behavior. Beam modeling has been performed via a two-variable theory developed for thick beams. Then, nonlocal elasticity has been used to establish the governing equation which are solved via Chebyshev-Ritz-Bolotin method. Temperature and moisture variation showed notable effects on stability boundaries of the beam. Also, the stability boundaries are affected by the amount of porosities inside the material.
This paper presents the semi-analytical development of the dynamic instability behavior and the dynamic response of functionally graded (FG) cylindrical shallow shell panel subjected to different type of periodic axial compression. First, in prebuckling analysis, the stresses distribution within the panels are determined for respective loading type and these stresses are used to study the dynamic instability behavior and the dynamic response. The prebuckling stresses within the shell panel are the same as applied in-plane edge loading for the case of uniform and linearly varying loadings. However, this is not true for the case of parabolic loadings. The parabolic edge loading produces all the stresses (${\sigma}_{xx}$, ${\sigma}_{yy}$ and ${\tau}_{xy}$) within the FG cylindrical panel. These stresses are evaluated by minimizing the membrane energy via Ritz method. Using these stresses the partial differential equations of FG cylindrical panel are formulated by applying Hamilton's principal assuming higher order shear deformation theory (HSDT) and von-$K{\acute{a}}rm{\acute{a}}n$ non-linearity. The non-linear governing partial differential equations are converted into a set of Mathieu-Hill equations via Galerkin's method. Bolotin method is adopted to trace the boundaries of instability regions. The linear and non-linear dynamic responses in stable and unstable region are plotted to know the characteristics of instability regions of FG cylindrical panel. Moreover, the non-linear frequency-amplitude responses are obtained using Incremental Harmonic Balance (IHB) method.
The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.
This paper deals with the dynamic stability of nanocomposite pipes conveying pulsating ferrofluid. The pipe is reinforced by carbon nanotubes (CNTs) where the agglomeration of CNTs are considered based on Mori-Tanaka model. Due to the existence of CNTs and ferrofluid flow, the structure and fluid are subjected to axial magnetic field. Based on Navier-Stokes equation and considering the body forced induced by magnetic field, the external force of fluid to the pipe is derived. For mathematical modeling of the pipe, the first order shear deformation theory (FSDT) is used where the energy method and Hamilton's principle are used for obtaining the motion equations. Using harmonic differential quadrature method (HDQM) and Bolotin's method, the motion equations are solved for calculating the excitation frequency and dynamic instability region (DIR) of the structure. The influences of different parameters such as volume fraction and agglomeration of CNTs, magnetic field, structural damping, viscoelastic medium, fluid velocity and boundary conditions are shown on the DIR of the structure. Results show that with considering agglomeration of CNTs, the DIR shifts to the lower excitation frequencies. In addition, the DIR of the structure will be happened at higher excitation frequencies with increasing the magnetic field.
Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. In order to present a realistic model, the structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are incorporated based on Eringen'n nonlocal theory. Equations of motion are derived from the Hamilton's principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG plate, structural damping and boundary conditions on the dynamic instability of system. The results are compared with those of first order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling responses of system.
Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.
Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
Steel and Composite Structures
/
v.24
no.4
/
pp.499-512
/
2017
This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.