• Title/Summary/Keyword: Bollard

Search Result 35, Processing Time 0.033 seconds

Performance Evaluation and Proposal on Standard Establishment of the Bollard Through Impact Analysis (충돌해석을 통한 볼라드의 성능평가 및 설치기준 제안)

  • Cha, Eun-Ho;Jeon, Doo-Jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.59-66
    • /
    • 2016
  • Recently damage of structures and loss of life by terrorism are internationally increasing. Among these terror that have a possibility to can happen in korea and that can caused lot of human life loss is the vehicle terror. To prevent the vehicle terror, the anti-ram barriers are needed. But domestic standard about anti-ram barriers are not clear. So, in this study, we will utilize and analyze the vehicle impact to evaluate the efficiency of the domestic bollard and suggest the installation standard of those. In Korea, granite, elastic, steel and stainless bollard are used. The performance of those bollard is not available. Elastic bollard couldn't stop the vehicle, and the others just could stop the vehicle only at the speed under 10kph. Therefore, set the variable to reinforce, and evaluate the defence efficiency of bollard. As a result, granite and elastic bollard was not suitable for the anti-ram barriers. Performance of steel bollard increased as thickness grew. So steel bollard should must be thicker than 10T. And the concrete compressive strength effected insignificantly on the defence efficiency, so more than 24MPa compressive concrete be used. Performance of stainless bollard increased as thickness grew. So stainless bollard should must be thicker than 13T.

School Zone Safety Improvement Using Smart Bollard (Smart Bollard를 이용한 어린이보호구역에서의 안전성 제고에 관한 연구)

  • Kim, Hoe Kyoung;Lim, Jae Moon;Sul, Jae Hoon;Oh, Yun Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.251-259
    • /
    • 2013
  • This paper is aimed to introduce to a moving bollard (i.e., smart bollard) to improve the pedestrian safety along the crosswalk in the school zone as a means to physically separate pedestrians and approaching vehicles, to propose the appropriate criteria for its installation and implementation from the traffic engineering perspective, and to evaluate its effectiveness with the microscopic simulation model. The simulation results indicate that implementing the smart bollard results in the decrease of average approaching speed and traffic throughput and the most critical factors affecting its effectiveness are yellow time of the traffic signal directly associated with the location of the advance warning sign and its operation time, 5~6 seconds and 2~3 seconds, respectively.

A Study on the Fundamental Performance of Electric-driven Bollard (전동식 볼라드의 기본 성능에 관한 연구)

  • Park, Tae-Joon;Jung, Byeong-Gyu;Lee, Kee-Man
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.169-173
    • /
    • 2011
  • This study is about the development of remote controlled bollard using the BLDC motor and ball screw with mechatronics theory. A bollard is composed of the sensor part and the control part. The sensor part is consisted of sensors that detect the locations of a bollard. The role of the control part is adjusting motor speed and power through variable resistance. In order to confirm required performance, the speed of decent and ascent of the bollard, the time and the RPM of BLDC motor were tested according to the variable resistance and the applied load with 10 to $72kg_f$.

Development of a Multistage Bollard with Up and Down Movement (다단식 상하이동형 볼라드의 개발)

  • Byun, Hong-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.15-21
    • /
    • 2015
  • Bollard installed on the street is a facility that protects pedestrians by restraining cars from entering on the sidewalk. It is basically classified into manual, semiautomatic, automatic type and mostly manual type is widely used because the automatic type is imported and much expensive. However, in case of manual handling type in practice, it is very troublesome and difficult to remove it whenever cars are permitted, and in case of automatic type, since underbody of a bollard is very long, it is difficult to dig a deep hole in the ground because a pipe, a hose or a cable is under the surface. In order to reduce these difficulties, this paper proposed new design of the multistage bollard that moves up and down automatically by using hydraulic system. This is developed by 6 step creativity of TRIZ inventive problem solving and structural analysis. The developed bollard can be installed in shallow hole and allow entry of vehicles through up-and-down movement without its removal manually. Finally, we could see smoothly motion through the manufactured bollard.

A Study on the Fundamental Performance of Electric-driven Bollard (전동식 볼라드의 기본 성능에 관한 연구)

  • Park, Tae-Joon;Jung, Byeong-Gyu;Song, Jun-Ho;Lee, Kee-Man
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.385-388
    • /
    • 2011
  • This study is about development of remote controlled bollard using the BLDC motor mechatronics theory. A bollard is composed of the sensor part and the control part. The sensor part is consisted of sensors that detect the locations of a bollard. The role of the control part are adjusting motor speed and power through variable resistance. In order to confirm required performance, The speed of decent and ascent of the bollard, the time and the RPM of BLDC motor were tested according to the variable resistance and the load.

  • PDF

A study on design optimization of a multistage bollard by Taguchi method (다구찌 방법을 통한 다단식 상하이동형 볼라드의 설계 최적화 연구)

  • Byun, Hong-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.25-31
    • /
    • 2015
  • This study deals with optimal conditions for design parameters of the multistage bollard with up and down installed on the street to protect pedestrians or stop cars. FE simulation and Taguchi method are used to achieve the optimization for the automatic multistage bollard to minimize effective stress caused by the external force. Thickness, height of stage 2, diameter and over-all height which affect its structural strength are chosen as design parameters. According to the experiments combined by orthogonal array, each of the effective stresses is evaluated. And the results are analyzed by using the signal to noise ratio concept of Taguchi method. From their results, the optimal combination of design parameters are proposed.

Study on Prediction of Net Thrust of Multi-Pod-Driven Ice-Breaking Vessel Under Bollard Pull and Overload Conditions According to the Change of Water Depth Using Computational Fluid Dynamics-Based Simulations (수심 변화에 따른 볼라드 당김 및 과부하 조건에서의 다중 포드 추진 쇄빙선박의 여유추력 추정에 대한 수치해석적 연구)

  • Kim, JinKyu;Kim, Hyoung-Tae;Kim, Hee-Taek;Lee, Hee-Dong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.158-166
    • /
    • 2021
  • In this paper, a numerical analysis technique using a body force model is investigated to estimate the available net thrust of multi-pod-driven ice-breaking vessels under bollard pull and overload conditions. To employ the body force model in present flow simulations, drag and thrust components acting on the pod unit are calculated by using Propeller Open Water (POW) test data. The available net thrusts according to the direction of operation are evaluated in both bollard pull and overload conditions under deep water. The simulation results are compared with the model test data. The available net thrusts, calculated by the present analysis for ahead operating modes at 3~6 knots which are typical speeds of the target vessel in arctic field, are agreed well with the model test results. It is also found that the present result for astern operating mode appears approximately 6 % larger than the model test result. In addition, the available net thrusts are calculated under the both operating conditions accompanied by shallow water effects, and the main cause of the difference is studied. Based on the result of the present study, it is confirmed that the body force model can be applied to the performance evaluation of multi-pod propulsion system and the main engine selection in early design stage of the vessel.

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

  • Joung, Tae-Hwan;Choi, Hyeung-Sik;Jung, Sang-Ki;Sammut, Karl;He, Fangpo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.269-281
    • /
    • 2014
  • This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYS-CFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

Study on the Characteristics of Thrust and Torque for Partially Submerged Propeller (부분 침수 프로펠러의 bollard pull 추력 및 토오크 특성 연구)

  • Park, H.G.;Lee, T.G.;Paik, K.J.;Choi, S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.264-272
    • /
    • 2011
  • Shipbuilders carry out the operation test to check the conditions of the main propulsion system and auxiliaries for moored vessel in the quoy before the sea trial. The estimation of the thrust and torque for the partially submerged propeller should be prepared to ensure the safety of mooring line and the ship. In this paper, the variations of the thrust and torque according to the shaft submergence and the propeller rotating speed in bollard pull condition are investigated with the model test and the numerical analysis. Based on these resaearch, the empirical formula representing the physical phenomena of the partially submerged propeller is derived and validated through comparison to measurement results of full-scale propellers under the quoy operation test.

Development of the Large-Capacity Mooring Fittings according to MEG4(Mooring Equipment Guideline 4) (MEG4(Mooring Equipment Guideline 4) 적용에 따른 대용량 무어링 피팅 개발)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.950-957
    • /
    • 2023
  • For safe mooring and towing between the ship and port, the equipment must be designed in accordance with the relevant international regulations. However, some small shipyards and engineering companies often do not fully comprehend the core contents. Therefore, the international regulations regarding towing and mooring equipment are reviewed and the bollard and chock are newly developed based on the Mooring Equipment Guideline 4 (MEG4) standards. A bollard is a mooring equipment used to fix a mooring rope to the hull. It has two columns and is mostly used in a figure eight pattern knots under the mooring condition. The chock, which is used to change the mooring rope direction coming into the ship from outside, is manufactured using a casting with curvature. The two mooring equipment are widely used in the stern, bow, and mid-side. Owing to the increase in the size of container vessels and LNG ships, the mooring rope load has increased and the safe working load of the mooring equipment must be revised. This study summarizes and examines the results of the allowable stress method obtained using finite element analysis modelling. To consider the mesh size effect, a reasonable criteria was suggested by referring the existing class guidance. Additionally, the safe working load was verified through nonlinear collapse analysis, and the elastic region against load increments was confirmed. Furthermore, the proposed evaluation method can be used to develop similar equipment in the near future.