• Title/Summary/Keyword: Boiling stable protein

Search Result 6, Processing Time 0.02 seconds

The Effect of NaCI Treatment on the Freezing Tolerance and Protein Patterns of Carrot Callus Suspension Culture

  • Moon, Soon-Ok;Park, Sook-Hee;Cho, Bong-Heuy
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.21-25
    • /
    • 1997
  • The growth. freezing resistance and electrophoretic protein patterns of carrot callus cultures were investigated following treatment with NaCl for various' intervals at 20$^{\circ}C$. Following 7 day exposure to 250 mM NaCl. freezing tolerance increased, which was measured by 2.3.5-triphenyl tetrazolium chloride (TTC) assay and fresh weight was reduced compared to control cells. Changes of electrophoretic patterns of total and boiling stable proteins were investigated using one or two dimensional gel system. Several proteins with molecular weight of 43 and 21 kDa increased by NaCl treatment. The most prominent change was detected in 21 kDa protein. The steady state level of this protein increased in NaCl treated cells, but decreased in control cells. Twenty one kDa protein was detected only in the NaCl treated cell when boiling stable protein was analyzed. The isoelectric point of 21 kDa protein was identified as 5.7. The timing of increase of 21 kDa protein was correlated to freezing resistance which implied the role of this protein in the induction of freezing resistance of the cell.

  • PDF

Induction of Boiling Stable Proteins by Cold and ABA Treatment in Radish Cotyledon and Hypocotyl (무 자엽과 하배축에서 저온과 ABA처리로 유도된 중탕에 강한 단백질 분석)

  • Cho, Bong-Heuy
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.346-350
    • /
    • 2000
  • Boiling stable proteins of 53 kDa and 29 kDa existed natively in the cotyledons of Bak Kyoung, fall radish (Raphanus raphanistrodes L.) Boiling stable proteins of 36 kDa and 16.5 kDa were newly induced by cold stress and the proteins of 53 kDa and 29 kDa increased during the cold stress. The proteins of 53 kDa were denatured within 2 hrs after removing cotyledons from plants. Boiling stable proteins of 53 kDa existed natively in the hypocotyls as much as in the cotyledons whereas 24 kDa and 18 kDa proteins were increased by stress. Boiling stable proteins of 53 kDa were induced and those of the 25 kDa and 23 kDa were increased by cold treatment and ABA treatment in the cotyledons of Jangchundaehyung F1 spring white (Raphanus raphanistrodes L.). These results showed the differences of induced boiling stable proteins between fall radishes and spring radishes. Cycloheximide inhibited the induction of 25 kDa and 23 kDa proteins during stress. 22 kDa native protein disappeared during ABA treatment and reappeared by cycloheximide treatments. It may be explained that cycloheximide was responsible for the destruction process of proteins in the living organisms. The profile of boiling stable proteins in hypocotyls of spring radishes during stress was same as that of fall redishes.

  • PDF

UV-spectrophotometric and electrophoretic analysis composition of protein and the content of sugars of young Ricinus communis L. by cold treatment (UV-분광광도법과 전기영동에 의한 피마자 유식물에서 저온처리에 의한 당류 함량과 단백질 구성의 분석)

  • Cho, Bong-Heuy;Park, Sun Young;Park, Myon-Yong
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.181-186
    • /
    • 1995
  • The contents of sucrose and reducing sugars of cotyledons and hypocotyls of Ricinus communis L were increased slightly during cold treatment at $4^{\circ}C$. The concentration of total amino acids was increased continuosly during cold treatment. But the contents of hydrophilic amino acids, Asp/Asn, Glu/Gln, Thr, Ser, Ala and cationic amino acids, Arg and Lys were varied dramatically with the cold treated time. The cold treatment induced 24, 52, 54, 55, 56 and 73.5kD of proteins in cotyledons and 55, 56 and 73.5kD of proteins in hypocotyls. 24, 42, 49 and 52kD of proteins in cotyledons and hypocotyls were boiling stable. They were not denatrated by boiling at $100^{\circ}C$.

  • PDF

Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana

  • Zhu, Bo;Xiong, Ai-Sheng;Peng, Ri-He;Xu, Jing;Zhou, Jun;Xu, Jin-Tao;Jin, Xiao-Fen;Zhang, Yang;Hou, Xi-Lin;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.382-387
    • /
    • 2008
  • It is known that the stable protein 1 (SP1) detected in aspen plants remains soluble upon boiling and that sp1 expression in transgenic aspen is resistant to salt stress. Presently, we analyzed the effect of expression of SP1 in Arabidopsis thaliana plants and their response to high temperature stress. After $45^{\circ}C$ for 16 h, relative to wild type plants, sp1 transgenic plants exhibited stronger growth and were better in several physiological properties including chlorophyII, chlorophyII fluorescence, water content, proline content, and malondialdehyde content. These preliminarily results suggest that the over-expression of SP1 may notably enhance heat-tolerant level of transgenic A. thaliana plants.

Characteristics of dairy goat milk positive reaction of the alcohol precipitation test in Korea (우리나라 유산양 알코올 양성유의 특징에 관한 연구)

  • Kim, Hye-Ra;Jung, Ji-Young;Cho, In-Young;Yu, Do-Hyeon;Shin, Sung-Shik;Son, Chang-Ho;Ok, Ki-Seok;Hur, Tai-Young;Jung, Young-Hun;Choi, Chang-Yong;Suh, Guk-Hyun
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2013
  • The objective of the present study was to determine the minimum alcohol (ethanol) concentration that gives rise to the coagulation of goat milk for the alcohol precipitation test, and to evaluate the physical parameters of goat milk which include alcohol and heat stability. A total of 1,295 udder-half milk samples from 648 lactating dairy goats were collected from seven farms in Jeonnam province, Republic of Korea, to determine the alcohol and heat stability. The majority (99.6%) of the samples were coagulated when 70% ethanol was added to the milk, while only 11.0% of the samples were precipitated by the addition of an equal volume of 45% ethanol. With the concentration of 65%, 60%, 55% and 50% aqueous ethanol, 99.2%, 96.8%, 81.0% and 52.8% of the milk samples were coagulated, respectively. Of 1,295 dairy goat milk samples tested for heat stability, 127 (9.8%) were coagulated by boiling. Among the 143 alcohol test-positive udder-half milk samples, 52 (4.0%) were unstable by heat test, while 1,032 (79.7%) of the 1,152 alcohol test-negative milk samples were stable by heat test. According to the results of boiling test, sensitivity and specificity of 45% alcohol precipitation test were 0.3023 (95% CI: 0.2346~0.3772) and 0.9190 (95% CI: 0.9017~0.9344), respectively. The contents of protein and the specific gravity were higher in the milk samples of 45% alcohol test-positive than in those of 45% alcohol test-negative. However, lower levels of lactose and milk urea nitrogen were observed in the milk samples of 45% alcohol test-positive compared to the alcohol test-negative milk samples. The lowest pH values ($6.73{\pm}0.20$) were shown in the 45% alcohol test-negative and heat-unstable milk samples, while the lowest values of somatic cell counts and bacterial counts were shown in the 45% alcohol test-negative and heat-stable milk samples. Results of this study suggest that the alcohol precipitation for dairy goat milk may have to be tested with ethanol concentration less than 45% for the determination of freshness and heat-stability.

A study on the Rapid Processing of Hydrolyzed Anchovy Paste and Its Quality Stability (효소분해법에 의한 페이스트형 속성 멸치젓의 제조 및 품질에 관한 연구)

  • HAN Bong-Ho;KIM Sang-Ho;CHO Hyun-Duk;CHO Man-Gi;BAE Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.79-87
    • /
    • 1997
  • A study on the processing method of anchovy hydrolysate paste (AHP) was carried out to improve the sensory quality of salted and fermented fish. Homogenized whole anchovy was hydrolyzed using commercial pretenses, Complex enzyme-2000 (CE, Pacific Chem. Co.) and Alcalase (AL, Novo), in a cylindrical vessel with 4 baffle plates and 6-bladed turbine impeller. Optimal pH, temperature, and enzyme concentration for the hydrolysis with CE and AL were $7.0,\;52^{\circ}C,\;7\%$, and $8.0,\;60^{\circ}C,\;6\%$, respectively. The rational amount of water for homogenization, agitation speed, and hydrolyzing time were $100\%\;(w/w)$, 100 rpm, and 210 min, respectively. To make the hydrolysate to paste type, it was effective to mix the additives, such as starch, soybean protein, agar, and carrageenan gum to the hydrolysate 5 min before the end of boiling at $100^{\circ}C$ for 30 min. Minimal NaCl concentration for long-term preservation was $15\%$, and this could be reduced to $12\%$ by adding $5\%$ of KCl. yield of the AHP based on the total nitrogen content was $94.6\~97.0\%,\;and\;86.0\~89.2\%$, of the nitrogen was amino nitrogen. Salinity, pH and histamine content of the AHP prepared with $12\%$ NaCl and $5\%$ KCl were $9.3\~9.9\%,\;6.1\~6.2$, and below 13 mg/100 g, respectively. The AHP was stable at $26{\pm}3^{\circ}C$ for 60 days on bacterial growth, and addition of $0.05\%$ of rosemary (Herbalox) extract was effective to inhibit the lipid oxidation of the AHP during storage.

  • PDF