• 제목/요약/키워드: Boiler tube

검색결과 197건 처리시간 0.023초

발전용 보일러의 후부 전열면 소음진동 저감에 관한 사례 연구 (A Case Study on The Reduction and Examination for Noise and Vibration of Backpass Heat Surface in the Power Plant Boiler)

  • Lee, Gyoung-Soon;Lee, Tae-Hoon;Moon, Seung-Jae;Lee, Jae-Heon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.642-647
    • /
    • 2008
  • The boiler structure is determined by combustion characteristics and construction costs in the combustion chamber of a large commercial boiler. The heat transfer in boiler is composed of the radiation and the convection. The convective heat transfer has happened to back-pass heating surface. The combustion gas sequentially passes through the reheater tube, 1st economizer tube, and 2nd economizer tube. In case of being lowered in boiler height, we have to install additional tube bundle in back-pass heating surface for increasing the heat transfer of boiler, which causes the noise and vibration from combustion gas. When the combustion gas passes through the back-pass tube bundle in specified load of commercial boiler, this paper analyzes the acoustic characteristics between vortex-shedding frequency and natural frequency in tube bundle cavity. The case study reduce the resonance by changing natural frequency characteristics of tube-bundle cavity using a way to install ant-noise baffle in the direction of combustion gas flow.

  • PDF

X20CrMoV12.1강의 열화에 따른 기계적특성 평가 (The Evaluation of Mechanical Property of X20CrMoV12.1 Boiler Tube Steels)

  • 김범수;이성호;김두수;정남근
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.18-22
    • /
    • 2004
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. The material for boiler tubes is used in such high temperature and pressure condition as $540^{\circ}C$, 22MPa. The boiler tube material is required to resist creep damage, fatigue cracking, and corrosion damages. 2.25%Cr-1Mo steel is used for conventional boiler tubes, and austenitenite stainless steel is used for higher temperature boiler tubes. But the temperature and pressure of steam in power plant became higher for high plant efficiency. So, the property of boiler tube material must be upgaded to fit the plant property. Several boiler tube material was developed to fit such conditions. X20CrMoV12.1 steel is also developed in 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensite microstructures which is difficult to evaluate the degradation. In this thesis, degrade the X20CrMoV12.1 steel at high temperatures in electric furnace, and evaluate hardness with Vickers hardness tester and strengths with Indentation tester.

  • PDF

X20CrMoV12.1강의 열화평가에 관한 연구 (A Study on the Degradation Evaluation of X20CrMoV12.1 Steel)

  • 이성호;김태형
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.58-64
    • /
    • 2012
  • Power plant boiler is one of the most important utilities providing steam to turbine in thermal power plant. It is composed of thousands of boiler tubes for high efficient heat transfer. Boiler tube material is used in such high temperature and pressure as $540^{\circ}C$, $170kg/mm^2$. The boiler tube material is needed to resist corrosion damage, creep damage and fatigue damage. 2.25%Cr-1Mo steel is used for conventional boiler tubes. In these days steam temperature and pressure of the power plant became higher for high plant efficiency. So, the material property of boiler tube must be upgraded to meet the plant property. Several boiler tube material was developed to meet such condition. X20CrMoV12.1 steel is also developed in early 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensitic structure, which is difficult to evaluate the material degradation. Boiler tube material at severe condition was tested to evaluate long term and short term degradation and creep. Through long term and high temperature degradation test, lath structure was decreased and recrystallization has been proceeded by sub-crystal. And in this research the effect of temperature and stress on boiler tube characteristic,for example, deformation by creep was changed rapidly at relatively high temperature and stress because creep was affected easily by temperature and stress.

노통연관식 보일러의 압궤사고 방지대책 (Measures for Preventing Pressure Fracture of Fire and Flue Tube Boiler)

  • 이근호
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.14-19
    • /
    • 2004
  • Boiler is a hazardous equipment to have potential explosion ail the time. And not only it has malfunction at explosion. it lead to people death but also secondary accident such as explosion and fire. Therefore, this equipment should not be broken for keeping its own function. And also, high level of safety should be kept in the process of the use not to be malfunctioned. A large scale of accident due to boiler explosion can be preventive in advance. Boiler fracture is occurred by instant expansion (approximately 1700 time) from quick evaporation of rater in boiler, due to pressure decrease in boiler Emitting energy from it is tremendous and it is so dangerous because of its high temperature. Secondary explosion such as fire is also a main hazard occurring at fuel supply place. If any devices with high pressure is broken, then not only boiler vessel but also components of it are spread with high speed, causing secondary accident. This study is to analyze integrally accident cause of fire and flue tube boiler to have occurred pressure fracture actually, to show countermeasures to prevent accident loss from the fire and flue tube boiler.

초임계압 보일러 수냉벽 튜브의 파열사고 분석 (Failure Analysis of Waterwall Tubes in Super Critical Boiler)

  • 김범수;정남근;김두수;이성호
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.20-24
    • /
    • 2003
  • Boiler is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer. Water is converted to steam inside the waterwall tubes. Many chemical components dissolved in boiler water come out of itself, deposit to the tube wall surface, prohibit heat transer, raise tube metal temperature, eventually fail the boiler tubes. Several tasks such as fracture surface study, tensile test, hardness test, metallurgical test, composition analysis of sticking elements were conducted to identify the root cause of tube failure.

  • PDF

Characterization of Microstructure and Thermal property of Ash Deposits on Fire-side Boiler Tube

  • Bang, Jung Won;Lee, Yoon-Joo;Shin, Dong-Geun;Kim, Younghee;Kim, Soo-Ryong;Baek, Chul-Seoung;Kwon, Woo-Teck
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.659-664
    • /
    • 2016
  • Ash deposition of heat exchange boiler, caused mainly by accumulation of particulate matter, reduces heat transfer of the boiler system. Heat and mass transfer through porous media such as ash deposits mainly depend on the microstructure of deposited ash. Therefore, in this study, we investigated microstructural and thermal properties of the ash deposited on the boiler tube. Samples for this research were obtained from the fuel economizer tube in an industrial waste incinerator. To characterize microstructures of the ash deposit samples, scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD) and BET analysis were employed. The results revealed that it had a porous structure with small particles mostly of less than a few micrometers; the contents of Ca and S were 19.3, 22.6% and 18.5, 18.7%, respectively. Also, the results showed that it consisted mainly of anhydrite ($CaSO_4$) crystals. - The thermal conductivities of the ash deposit sample obtained from the economizer tube in industrial waste incinerator were measured to be 0.63 and 0.54 W/mK at $200^{\circ}C$, which were about 100 times less than the thermal conductivity (61.32 W/mK) of the boiler tube itself, indicating that ash deposition on the boiler tube was closely related to a decrease in boiler heat transfer.

금속 자기기억법 활용 보일러 튜브의 미소 결함 검출력 연구 (Study of Boiler Tube Micro Crack Detection Ability by Metal Magnetic Memory)

  • 서정석;명주홍;방지예;정계조
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.93-96
    • /
    • 2022
  • The boiler tubes of thermal power plants are exposed to harsh environment of high temperature and high pressure, and the deterioration state of materials rapidly increases. In particular, parent material and welds of the materials used are subjected to a temperature change and various constraints, resulting in deformation and its growth, resulting in frequent leakage accidents caused by tube failure. The power plant checks the integrity of boiler tubes through non-destructive testing as it may act as huge costs loss and limitation of power supply during power station shutdown period due to boiler tube leakage. However, the current non-destructive testing is extremely limited in the field to detect micro cracks. In this study, the ability of metal magnetic memory technique to detect flaws of size that are difficult to inspect by the visual or general non-destructive methods was verified in the early stage of their occurrence.

보일러튜브 용접부 비파괴검사를 위한 컴퓨터화 방사선투과시험 적용 연구 (Application of Computed Radiography for Nondestructive Testing of Boiler Tube Weldments)

  • 박상기;안연식;길두송
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.95-102
    • /
    • 2009
  • A steam generator (boiler) in thermal power plants, consisting of more than 30,000 parts and components, can lead to the plant shutdown with damage to even the small part of the components; esp., like weld failures on boiler tubes. Consequently it is greatly demanded to improve the quality of the weld on the boiler tube for the stable operation of the power plants. Because of the feature of the welding, which is done past by melting the work pieces and adding a filler material that cools to become a strong coalescence, there is a great possibility that weld failures take place. As a result, it is regulated to make a non-destructive testing, like radiography test, to detect defects and flaws in the weld. The current film radiography test provides a lower image quality exceeding 2.0% of a basic quality level for a penetrameter, it is very likely to fail to detect micro defect. As a result, the prevention for the boiler tube failure has not been made effectively. In this study, computed radiography technology has been applied as a digital radiography test to the boiler tube weld, and Se-75 radiation source was used to improve the image quality, instead of Ir-192 source. As a result of this study, it is proven to save the time and cost for test and to enhance the quality level of penetrameter penetrating image, which enables to upgrade the quality of radiography test to the boiler tube weld.

  • PDF

순환유동층보일러의 과열기 튜브 부식에 알칼리 금속과 염소가 미치는 영향 (Effects of Alkali Metals and Chlorine on Corrosion of Super Heater Tube in Biomass Circulating Fluidized Bed Boiler)

  • 백승기;유흥민;장하나;정현태;서용칠
    • 공업화학
    • /
    • 제28권1호
    • /
    • pp.29-34
    • /
    • 2017
  • 본 연구에서는 순환유동층 보일러 과열기 튜브의 부식 원인물질을 규명하여, 부식방지를 위한 방안을 모색하고자 하였다. 연료, 과열기 튜브 부식부위, 과열기 튜브에 부착된 재 및 보일러 재를 채취하여 성분분석을 수행하였다. 과열기 튜브 부식부위에서 산화로 인한 O성분이 함유되어 있는 것을 확인하였다. 과열기 튜브 부착 재 및 보일러 재에서 6.1% 및 4.3%의 Cl이 분석되었으며, 이는 설계값의 약 14-20배 정도 높은 수치이다. 또한 알칼리 금속물질(K, Na, Ca)의 함량이 매우 높게 분석되었다. XRF 데이터를 이용하여 보일러에서 재의 슬래깅과 파울링에 대한 영향을 예측하였다. Basicity는 과열기 튜브 부착 재 및 보일러 재에서 각각 3.62 및 2.72로 산정되었으며, 설계값인 0.35에 비하여 높은 수치를 갖는 것으로 확인되었다.

동심원관-pin fin 열교환기를 이용한 소형 증기보일러 대류실 설계 (The design of heat exchanger of small size steam boiler using the concentric annuli tube with pin fin)

  • 김성일;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.115-118
    • /
    • 2012
  • The configurations of the heat exchanger of the boiler can be determined from the trade-off between the heat transfer area which is related to the capital cost and the pressure drop which is related to operating cost. In this study, 3.5 ton/hr small size marine boiler having concentric annuli tubes is the design boiler. To determine the optimizing point, according to diameter, number, length of tube, heat transfer, pressure drop, operating cost and capital cost have been calculated. Also, when the fin tube is replaced by the bare tube design parameters changed have been calculated.

  • PDF