• Title/Summary/Keyword: Boiler tube

Search Result 198, Processing Time 0.023 seconds

Evaluation of Integrity of the Tubes in the Horizontal Fixed Tubesheet Heat Exchanger by Using Equivalent Modeling (고정 튜브시트를 갖는 수평형 열교환기의 등가 모델링을 이용한 튜브 건전성 평가)

  • Jeon, Yun-Cheol;Kim, Tae-Wan;Jeong, Dong-Gwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.179-187
    • /
    • 2002
  • Finite element analysis was performed to evaluate the integrity of the tubes in the fixed tubesheet of horizontal type heat exchanger under operating condition. For the finite element analysis of the heat exchanger, tubes and tubesheets were equivalently modeled with concentroidal hexagonal columns and solid plates having equivalent properties for the convenience of finite element modeling, respectively. Load combination of tube pressure and thermal expansion most likely to precipitate possible failure of the tubes was selected and applied to the finite element analysis. The compressive stresses of the tubes were calculated based on displacements of each tube, which were obtained from anile element analysis. Finally, the maximum tube stress was compared with the design criterion of ASME Boiler and Pressure Vessel Code Section VIII.

Stress Intensity Factors for Axial Cracks in CANDU Reactor Pressure Tubes (CANDU형 원전 압력관에 존재하는 축방향 균열의 응력확대계수)

  • Lee, Kuk-Hee;Oh, Young-Jin;Park, Heung-Bae;Chung, Han-Sub;Chung, Ha-Joo;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • CANDU reactor core is composed a few hundreds pressure tubes, which support and locate the nuclear fuels in the reactor. Each pressure tube provides pressure boundary and flow path of primary heat transport system in the core region. In order to guarantee the structural integrity of pressure tube flaws which can be found by in-service inspection, crack growth and fracture initiation assessment have to be performed. Stress intensity factors are important and basic information for structural integrity assessment of planar and laminar flaws (e. g. crack). This paper reviews and confirms the stress intensity factor of axial crack, proposed in CSA N285.8-05, which is an fitness-for-service evaluation code for pressure tubes in CANDU nuclear reactors. The stress intensity factors in CSA N285.8-05 were compared with stress intensity factors calculated by three methods (finite element results, API 579-1/ASME FFS-1 2007 Fitness-For-Service and ASME Boiler and Pressure Vessel Code Section XI). The effects of Poisson's ratio and anisotropic elastic modulus on stress intensity factors were also discussed.

High-Temperature Corrosion Characterization for Super-Heater Tube under Coal and Biomass Co-firing Conditions (석탄-바이오매스 혼소에 따른 슈퍼히터 튜브 고온 부식 특성 연구)

  • Park, Seok-Kyun;Mock, Chin-Sung;Jung, Jin-Mu;Oh, Jong-Hyun;Choi, Seuk-Cheun
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.79-86
    • /
    • 2018
  • Many countries have conducted extensive studies for biomass co-firing to enhance the durability of reactor on high-temperature corrosion. However, due to the complicated mechanisms of biomass co-firing, there have been limitations in accurately determining the current state of corrosion and predicting the potential risk of corrosion of power plant. In order to solve this issue, this study introduced Lab-scale corrosion system to analyze the corrosion characteristics of the A213 T91 material under the biomass co-firing conditions. The corrosion status of the samples was characterized using SEM/EDS analysis and mass loss measurement according to various biomass co-firing conditions such as corrosion temperature, $SO_2$ concentration, and corrosion time. As a result, the corrosion severity of A213 T91 material was gradually increased with the increase of $SO_2$ concentration in the reactor. When $SO_2$ concentration was changed from 0 ppm to 500 ppm, both corrosion severity and oxide layer thickness were proportionally increased by 15% and 130%, respectively. The minimum corrosion was observed when the corrosion temperature was $450^{\circ}C$. As the temperature was increased up to $650^{\circ}C$, the faster corrosion behavior of A213 T91 was observed. A213 T91 was observed to be more severely corroded by the effect of chlorine, resulting in faster corrosion rate and thicker oxide layer. Interestingly, corrosion resistance of A213 T91 tended to gradually decrease rather than increases as the oxide layer was formed. The results of this study is expected to provide necessary research data on boiler corrosion in biomass co-firing power plants.

SCR facility design for the selective catalyst performance of mixed gas

  • Woohyeon, Hwang;Kyung-Ok, Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.121-127
    • /
    • 2023
  • In this study, the design conditions and CFD analysis results are compared and reviewed in SCR that can optimally reduce nitrogen compounds. To this end, it was analyzed and compared using CFD to see if the design criteria were satisfied for the shell and tube areas of the boiler. In the SCR system, the analysis area is the gas/air heat exchanger on the shell side, and eight tubes of the gas/air heat exchanger on the tube side. Through CFD analysis, the gas velocity distribution on the primary catalyst side of the SCR system was designed to be 2.4%, and the NH3/NOx molar ratio distribution was 3.7%, which satisfied the design criteria. In addition, the uniformity of the temperature distribution was confirmed and the required condition of 260℃ or higher was satisfied. The angle of the gas entering the catalyst met the design conditions at 2.9 degrees, and the pressure loss that occurred also satisfied the design requirements. Through this CFD analysis, it was confirmed that it was designed and operated by satisfying the design conditions required for each area.

Modeling of Combustion in Co-Generation / Industrial Boiler Furnace (열병합/산업용 보일러 화로에서의 연소 해석)

  • Kim, Byoung-Yun;Park, Pu-Min;Lee, Kyoung-Mo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.842-846
    • /
    • 2001
  • Our company produces boilers for industrial usages or power plants. The aim of this study is to investigate the flame structure, heat transfer to evaporator tube wall and NOx emission in the furnaces. Also we are to derive correct FEGT(Furnace Exit Gas Temperature) characteristic curve. When we design furnace and superheater, economizer etc. FEGT characteristic curve is very important factor for optimum design. We calculated turbulent reacting flow, heat transfer and NOx emission in furnace by using numerical modeling with the help of commercial code. Three dimensional steady state calculation is done. k-e turbulence model and equilibrium chemistry combustion model with $\beta-probability$ density function is used. To calculate radiation heat transfer discrete ordinates model is used. And we measured FEGT at several operating plants. Measurement is done by R-type thermocouple. Radiation shield is attached to the thermocouple to prevent radiation effect. Measured and calculated results show good agreement. And we could understand the flame structure and NOx formation positions in each furnaces.

  • PDF

A Study on Mechanical Properties Changes to Improve the Confidence of Remaining Life Evaluation for the Weldment of Power Plant Boiler Tube(SA213-T12) (발전설비 보일러 튜브 용접부의 잔여수명평가 신뢰성 향상을 위한 기계적 물성 변화 연구(SA213-T12))

  • Oh, Byungjin;Jang, Joong Soon
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.102-107
    • /
    • 2014
  • Boiler equipment in power plant is always being operated in harsh conditions and severely exposed to the extreme environment of high temperature. Therefore periodically the state of devices should be checked, diagnosed, and analyzed to ensure the reliability of the equipment. Traditionally, such a diagnosis is based one or two physical properties of the sample taken from the equipment like hardness, microstructure, etc.. However, to enhance the confidence of the diagnosis, it is necessary to synthesize those properties together. This paper is to propose such a synthetic procedure for SA213-T12(1Cr-0.5Mo) which was developed to be used in $565^{\circ}C$ below condition. Creep test and accelerated degradation test were performed simultaneously, and the physical properties such as microstructure, tensile strength, yield strength, hardness, and indentation properties were measured. This paper proposes a method of determining the remaining life by quantitative comparison. It will provide the basis of evaluating life assessment more objective and reliable.

A Study on Mechanical Properties Changes to Improve the Confidence of Remaining Life Evaluation for the Weldment of Power Plant Boiler Tube (발전설비 보일러 튜브 용접부의 잔여수명평가 신뢰성 향상을 위한 기계적 물성 변화 연구)

  • Oh, Byungjin;Jang, Joong Soon
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.26-34
    • /
    • 2013
  • Boiler equipment in power plant is always being operated in harsh conditions and severely exposed to the extreme environment of high temperature. Therefore periodically the state of devices should be checked, diagnosed, and analyzed to ensure the reliability of the equipment. Traditionally, such a diagnosis is based one or two physical properties of the sample taken from the equipment like hardness, microstructure, etc.. However, to enhance the confidence of the diagnosis, it is necessary to synthesize those properties together. This paper is to propose such a synthetic procedure for T23 which was developed to be used in $569^{\circ}C/596^{\circ}C$ condition. Creep test and accelerated degradation test were performed simultaneously, and the physical properties such as microstructure, tensile strength, yield strength, hardness, and indentation properties were measured. This paper proposes a method of determining the remaining life by quantitative comparison. It will provide the basis of evaluating life assessment more objective and reliable.

Material Degradation of X20 Steel (12Cr-1MoVNi) for Boiler Tube of Power Plant (발전설비 보일러 튜브용 X20강의 가속열처리에 의한 재질 열화)

  • Choe, Byung-Hak;Yoon, Kee Bong;Lee, Nam-Hyuck;Kim, Sin;Lee, Gil-Jae;Kim, Kwang-Ho;Kwon, Dong Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.276-282
    • /
    • 2008
  • Material degradation of Cr steels in boiler tubes was accompanied by the microstructural changes including carbide behavior and crack formation. The microstructural change and the mechanical behavior of hardness and creep properties in accelerated heat-treatments were studied in order to identify the material degradation of the X20 Cr steel. The degradation behavior was occurred in the hardness increasing followed by decreasing due to carbide dissolution and precipitation.

A Study on Wire-rope Type Furnace Scaffolding and Its Lifting System for Large-sized Boiler (대형 보일러 와이어로프 노내비계 및 인양시스템에 관한 연구)

  • HA, Seung Woo;Lee, Tae Ho;Lee, Hae Seung;Kim, Jeung Min;You, Tai Woo;Cho, Sun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.679-683
    • /
    • 2016
  • Boilers of large-sized coal-fired power plants are being operated under very poor conditions such as continuous operation or repeating of start-up and shutdown for a stable supply of electricity. Thus periodic inspection and maintenance are required to ensure reliability of operation. The loads of existing scaffolding systems for the maintenance of boilers are concentrated in the lower parts structurally, which may cause a serial collapse of the overall scaffolding system when there are problems in some members. Therefore, in this study, a safe furnace scaffolding system is developed by dispersing the loads in the upper part, as well as minimizing the hazards of serial collapsing. In addition, for cases where the direct installation of furnace scaffolding is challenging owing to the structure of the boiler tube, a lifting system for the installation of furnace scaffolding is developed so that furnace scaffolding can be supported to secure the integrity of the power generating facility.

Coal Ash Combustion Simulation for 500-MW Coal-firing Boiler (500MW급 화력발전 보일러의 석탄회 연소 시뮬레이션)

  • Hwang, Min-Young;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Gyu-Bo;Kim, Seung-Mo;Park, Myung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.939-946
    • /
    • 2011
  • In thermal power generation companies, the recycling of refined ash (LOI < 6%) obtained from a PC-firing furnace is beneficial for the companies, e.g., it can be used for making lightweight aggregates. However, ash having a high LOI, which cannot be reused, is still buried in the ground. To obtain refined ash, the re-burning of high-LOI ash (LOI > 6%) in a PC-firing furnace can be an alternative. In this study, a numerical analysis was performed to demonstrate the effects of ash re-burning. An experimental constant value was decided by TGA (thermo-gravimetric analysis), and a DTF (drop-tube furnace) was used in the experiment for calculating the combustion of ash. On the basis of the trajectory of the moving particles of coal and ash, it was concluded that supplying ash near the burner, which is located high above the ground, is appropriate. On the basis of numerical results, it was concluded that an ash supply rate of 6 ton/h is suitable for combustion, without affecting the PC-firing boiler.