• 제목/요약/키워드: Boiler control

검색결과 319건 처리시간 0.03초

상대 이득 행렬을 이용한 뉴로-퍼지 제어기의 설계 (Design of Neuro-Fuzzy Controller using Relative Gain Matrix)

  • 서삼준;김동원;박귀태
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.24-29
    • /
    • 2005
  • 일반적으로 다변수 계통에 대한 퍼지 제어에서 퍼지 규칙을 얻기가 어려워 입출력 사이의 페어링을 이용한 독립적인 단일 입력 단일 출력의 병렬 구조를 이용한다. 그러나, 결합되지 않은 입출력 변수간의 상호작용으로 제어 성능에 나쁜 영향을 준다. 특히, 강한 결합 특성을 가진 계통의 경우 제어 성능을 아주 저하시킨다. 본 논문에서는 이러한 상호작용에 의한 영향을 보상해주기 위해 상대 이득 행렬을 이용한 신경 회로망을 도입하였다 제안한 뉴로 퍼지 제어기는 역전파 알고리즘으로 학습되며 강호작용에 대한 결합강도를 자동으로 조정하여준다. 제안한 뉴로 퍼지 제어기의 성능을 200MW급 보일러 계통에 대한 컴퓨터 모의실험을 통해 입증하였다.

중유 연소 시 발생하는 미세입자 및 니켈과 바나듐의 대기 중 배출특성 (Emission Characteristics of Fine Particles, Vanadium and Nickel from Heavy Oil Combustion)

  • 장하나;김성현;이주형;황규원;유종익;석정희;서용칠
    • 한국대기환경학회지
    • /
    • 제22권3호
    • /
    • pp.353-360
    • /
    • 2006
  • This study identified a particle size distribution (PSD) of fine particulate matter and emission characteristics of V and Ni by the comparison between anthropogenic sources of oil combustion (industrial boiler, oil power plant, etc.) and lab-scale combustion using a drop-tube furnace. In oil combustion source, the mass fraction of fine particles (less than 2.5 micrometers in diameter) was higher than that of coarse particles (larger than 2.5 micrometers in diameter) in $PM_{10}$ (less than 10 micrometers in diameter) as like in lab-scale oil combustion. In addition to this, it was identified that ultra-fine particles (less than 0.1 micrometers in diameter) had a large distribution in fine particles. Toxic metals like V and Ni had large mass fractions in fine particles, and most of all was distributed in ultra-fine particles. Most of ultra-fine particles containing toxic metals have been emitted into ambient by combustion source because it is hard to control by the existing air pollution control device. Hence, we must be careful on these pollutants because it is obvious that these are associated with adverse health and environmental effect.

개선된 스케일 스페이스 필터링과 함수연결연상 신경망을 이용한 화학공정 감시 (Monitoring of Chemical Processes Using Modified Scale Space Filtering and Functional-Link-Associative Neural Network)

  • 최중환;김윤식;장태석;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1113-1119
    • /
    • 2000
  • To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.

  • PDF

ICT를 활용한 병원건물의 에너지 절감방안 연구 (Empirical Research on Application of ICT for Reduction of Energy Consumption of Hospital Buildings)

  • 이정환;한영도;김동욱
    • 한국콘텐츠학회논문지
    • /
    • 제18권1호
    • /
    • pp.422-430
    • /
    • 2018
  • 최근 유가 상승과 건물 에너지 소비 증가는 에너지 자원 해외 의존도가 높은 우리나라에 큰 부담이 되고 있다. 이런 상황에서 에너지 소비량의 40% 수준을 차지하는 빌딩건물의 에너지절감은 매우 중요한 이슈가 되는데, 본 연구는 ICT를 활용하여 건물에너지 소비량 및 전력사용요금 절감을 하는 최적제어방법을 구현한 실증 분석을 병원을 대상으로 수행하였다. 먼저 기존의 냉난방용 흡수식 냉온수기와 급탕용 보일러시설 일부를 수축열 히트펌프로 대체하고 사용하는 요금제의 조정을 통해 에너지소비량을 줄이고 요금을 절감하였다. 여기에 환경(외기온도, 사용량 증감 등) 변화를 고려한 ICT 기반 최적제어 기능을 추가적으로 적용함으로 기존 설비 대체 중심의 에너지절감 방법과 ICT 기반의 최적제어방법까지 고려한 효과를 분석하였다. 그 결과 본 연구에서 병원 대상의 최적제어방법은 에너지효율화 설비 적용으로 인한 절감량(53.6%)에 최적자동제어 효과(18.2%)까지 추가적으로 절감할 수 있는 것을 확인하였다. 본 연구 결과를 바탕으로 건물 에너지 절감 성과를 높이는 다양한 방안을 검토해 볼 수 있을 것이다.

변압 관류형 초임계압 화력발전소 전범위 시뮬레이터 개발 (The development of full-scope replica simulator for variable supercritical pressure once-through fossil power plants)

  • 이중근;안연식;정훈;이용관;한병성
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.392-399
    • /
    • 1998
  • A full-scope replica type simulator whose MCR(main control room) has the same features and operation functions as MCR of the reference power plant has been developed for a fossil power plant. This simulator was developed with the model of Poryung Fossil Power Plant #3,4 which is the standard model of the Korean fossil power plant. It is the first localized simulator for the supercritical, variable boiler pressure type fossil power plant. The simulator provides various kinds of accidents which are in normal plant operation and thus enables operators to recover or reduce possible damages. To design and develop this kind of simulator, we need to integrate high technologies such as system analysis, plant operation and system integration of mechanics, physics, computer science. CASE(Computer Aided Software Engineering) tools were used to develop the dynamic model. This simulator will greatly contribute to the improvement of the safety and efficiency of the fossil power plant by implementing operator training. In this paper, the outline of software and hardware configuration and characteristics of the simulator are described, and the results of 30%, 50%, 75%, 100% load operation test will be discussed.

  • PDF

서울지역 대형연소시설에서의 질소산화물 제거효율과 배출계수 산정 (Evaluation of NOx Reduction Efficiency and Emission Factor from Large Combustion Facilities in Seoul)

  • 신진호;오석률;김정영;전재식;신정식
    • 환경위생공학
    • /
    • 제18권2호
    • /
    • pp.27-33
    • /
    • 2003
  • This survey was performed to investigate the NOx emission factors at 3 Municipal Solid Waste Incinerators(MSWI) and 5 Power generation boilers in Seoul. The NOx concentrations were measured before and after control systems. The results were as follows. 1) The NOx reduction efficiencies of Selective Catalytic Reduction (SCR) using ammonia as reducing agent ranged from 53.7% to 89.9%. The NOx reduction efficiencies of SCR using methanol as reducing agent, Non- Selective Catalytic Reduction (NSCR) using ethanol as reducing agent and low-NOx burner were 20.8%, 29.1% and 24.7%, respectively. 2) The NOx emission factors at A-1, A-2 and A-3 facilities of MSWI were 0.786, 0.127 and 0.594 kg Nox/ton fuel, respectively. The factors of A-1 and A-3 facilities were higher than the average value of Korea. 3) The NOx emission factors at B-1, B-2, B-3, B-4 and B-5 facilities of Power generation boiler were 2.109, 0.726, 4.106, 8.378 and 5.168 kg Nox/ton fuel, respectively. The factors of B-4 and B-5 facilities were higher than the average value of Korea.

태양열을 이용한 흡수식 냉방기의 동특성 시뮬레이션 (Dynamic simulation of a solar absorption cooling system)

  • 정시영;조광운
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.784-794
    • /
    • 1998
  • The present study has been directed at developing thermal models to investigate the dynamic behavior of a solar cooling system including an absorption chiller, solar collectors, a hot water storage tank, a fan coil unit, and the air-conditioned space. The operation of the system was simulated for 8 hours in two different operation modes. In the mode 1, the system operated without any capacity control.0 the mode 2, an auxiliary boiler supplied heat to the generator if hot water temperature became lower than a certain value. Moreover, the mass flow rate of hot water to the generator was controlled by comparing the instantaneous room air temperature with the design value. The variation of temperature and concentration in the system components and that of heat transfer rates in the system were obtained for both modes of operation. It was found that the room temperature was maintained near the desired value in the mode 2 by supplying auxiliary heat or controlling the mass flow rate of hot water, while the deviation of room temperature was quite great in the mode 2.

  • PDF

화력발전소 보일러 급수용 펌프 배관계의 이상소음 저감에 관한 연구 (Study on Noise Control for Piping System of BFP in a Power Plant)

  • 양경현;조철환;배춘희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.490-494
    • /
    • 2004
  • The purpose of this paper was to identify the mechanism that caused abnormal vibration and noise on the piping system connected to discharge flow of BFP(Boiler Feed water Pump) in a coal fired power plant, and to develop the device that can reduce the level of abnormal vibration and noise. Major results of this project can be summarized as follows: First, we analyzed the acoustic mode for the discharge piping of BFP to trace a path of the noise, and assumed that noise and vibration on the piping system can be related with length of pipe. Second, a minimized model of the piping system was set up to simulate abnormal vibration and noise within the specific range of operating frequencies, and as a result we confirmed that the acoustic mode affected the piping system considerably. Finally the test device which can reduce the level of abnormal noise and vibration was built to verify validity applying for the piping system. Then we concluded that the noise and vibration generated from the piping system was attributed to the acoustic resonance in piping system, and so developed new device which can reduce the level of noise and vibration under 40%. Put Abstract here.

  • PDF

증기터빈 1단 Shell 압력측정에 의한 교축유동 고찰 (A Study of Steam Turbine Throttle Flow from Measured First Stage Shell Pressure)

  • 윤인수;이재헌;유호선;문승재;이태구;허진혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.373-376
    • /
    • 2008
  • Industrial Steam Turbine first stage shell pressure is related to throttle flow. Theoretically, first stage shell pressure could, therefore, be measured and used as an index of turbine throttle flow. However, accurate flow measurements show that this pressure is not a reliable index of the actual flow. Data analysis of steam turbinessubjected to ASME acceptance tests shows that the use of first stage shell pressure as an index of throttle flow produced errors as large as 9.6 %. The mean of the errors was +2.2% with a standard deviation of ${\pm}$2.8 %. Applications that require an accuratedetermination of turbine steam flow, such as turbine acceptance testing, should, therefore, not rely on this method. Therefore, First stage shell pressure measurement serves as a valid and economical indicator of turbine throttle flow in cases where a high degree of accuracy in throttle flow measurement is not required but repeatability is desired, such as for boiler control. Generally speaking, Steam turbine first stage shell pressure may also be a very useful monitor of turbine performance when used with certain other turbine measurements.

  • PDF

화력발전소의 대기오염물질 배출계수 산정 연구 (A Study on the Estimation of Air Pollutants Emission Factors in Electric Power Plants)

  • 김대곤;엄윤성;홍지형;이석조;석광설;이대균;이은정;방선애
    • 한국대기환경학회지
    • /
    • 제20권3호
    • /
    • pp.281-290
    • /
    • 2004
  • The main purpose of this study was to characterize the air pollutants emission factors in electric power plant (EPP) using fossil fuels. The electric power plant is a major air pollution source, thus knowing the emission characteristics of electric power plant is very important to develop a control strategy. The major air pollutants of concern from EPP slacks are particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), carbon monoxide (CO) and heavy metals. Throughout the study, the following results are estimated - PM : 8.671E-05 ∼ 8.724E+01 PM emission (kg) per fuel burned (ton) - SOx : 4.149E-04∼7.877E+01 SOx emission (kg) per fuel burned (ton) - NOx 1.578E-02∼9.857E+00 NOx emission (kg) per fuel burned (ton) - CO : 3.800E-04∼1.291E+00 CO emission (kg) per fuel burned (ton) - Hg : 1.220E+01∼3.108E+02 Hg emission (mg) per fuel burned(ton) From the statistical analysis by Wilcoxon signed ranks test between the emission factors of ours and U.S. EPA's, we can yielded that : p 〉0.05.