• Title/Summary/Keyword: Body-area network

Search Result 213, Processing Time 0.019 seconds

A Study on the Sensor Node Based Wireless Network Communication System for Efficient EEG Transmission (효율적인 EEG 전송을 위한 센서노드기반의 무선통신시스템에 관한 연구)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.5
    • /
    • pp.791-796
    • /
    • 2013
  • Advent of the brain wave health care system is considered as an important issues in the industrial and research area in these days. It is necessary to detect EEG signals in real-time in order to support the medical emergency service for the epileptic or brain infarct patients. Since the efficient network support is an essential factor for the system, several topologies using sensor node based wireless body area network is suggested and simulated in this paper. Finally the Opnet simulation result is evaluated for the efficient topology of the body area network.

Energy-aware Management in Wireless Body Area Network System

  • Zhang, Xu;Xia, Ying;Luo, Shiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.949-966
    • /
    • 2013
  • Recently, Wireless Body Area Network (WBAN) has promise to revolutionize human daily life. The need for multiple sensors and constant monitoring lead these systems to be energy hungry and expensive with short operating lifetimes. In this paper, we offer a review of existing work of WBAN and focus on energy-aware management in it. We emphasize that nodes computation, wireless communication, topology deployment and energy scavenging are main domains for making a long-lived WBAN. We study the popular power management technique Dynamic Voltage and Frequency Scaling (DVFS) and identify the impact of slack time in Dynamic Power Management (DPM), and finally propose an enhanced dynamic power management method to schedule scaled jobs at slack time with the goal of saving energy and keeping system reliability. Theoretical and experimental evaluations exhibit the effectiveness and efficiency of the proposed method.

Improved TDMA with Superframe Structure-based CSMA/CA MAC protocol for Wireless Body Area Network (WBAN을 지원하기 위한 개선된 슈퍼프레임 구조를 가지는 TDMA 기반의 CSMA/CA MAC 프로토콜)

  • Lee, Jae-Soo;Ahn, Jeong-Keun;Yun, Chan-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.87-93
    • /
    • 2012
  • Due to the development of information and communication, there is a rising interest on WBAN(Wireless Body Area Network) that maintain and check the human being health. According to the application of different quality of service and a special mechanism for transferring medical data are required in WBAN environment. In this paper, we proposed the new formed superframe that has CSMA/CA based TDMA scheduling and CSMA/CA used IEEE 802.15.4 in order to process emergency data and on-demand data in WBAN environment. We estimated performance of the proposed MAC protocol by compared performance of other MAC protocols that are IEEE 802.15.4 MAC protocl and Z-MAC protocol has contention access period based TDMA scheduling.

Hybrid Priority Medium Access Control Scheme for Wireless Body Area Networks (무선 인체통신 네트워크를 위한 복합 우선순위 MAC 기법)

  • Lee, In-Hwan;Lee, Gun-Woo;Cho, Sung-Ho;Choo, Sung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1305-1313
    • /
    • 2010
  • Last few years, wireless personal area network (WPAN) has been widely researched for various healthcare applications. Due to restriction of device hardware (e.g., energy and memory), we need to design a highly-versatile MAC layer protocol for WBAN (Wireless Body Area Network). In addition, when an emergency occurs to a patient, a priority mechanism is necessitated for a urgent message to get through to the final destination. This paper presents a priority mechanism referred to as hybrid priority MAC for WBAN. Through extensive simulation, we show the proposed MAC protocol can minimize the average packet latency for urgent data. Thus, when patients have an emergency situation, our MAC allows adequate assistance time and medical treatment for patients. The simulation based on NS-2 shows that our Hybrid Priority MAC has the good performance and usability.

A new Network Coordinator Node Design Selecting the Optimum Wireless Technology for Wireless Body Area Networks

  • Calhan, Ali;Atmaca, Sedat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1077-1093
    • /
    • 2013
  • This paper proposes a new network coordinator node design to select the most suitable wireless technology for WBANs by using fuzzy logic. Its goal is to select a wireless communication technology available considering the user/application requirements and network conditions. A WBAN is composed of a set of sensors placed in, on, or around human body, which monitors the human body functions and the surrounding environment. In an effort to send sensor readings from human body to medical center or a station, a WBAN needs to stay connected to a local or a wide area network by using various wireless communication technologies. Nowadays, several wireless networking technologies may be utilized in WLANs and/or WANs each of which is capable of sending WBAN sensor readings to the desired destination. Therefore, choosing the best serving wireless communications technology has critical importance to provide quality of service support and cost efficient connections for WBAN users. In this work, we have developed, modeled, and simulated some networking scenarios utilizing our fuzzy logic-based NCN by using OPNET and MATLAB. Besides, we have compared our proposed fuzzy logic based algorithm with widely used RSSI-based AP selection algorithm. The results obtained from the simulations show that the proposed approach provides appropriate outcomes for both the WBAN users and the overall network.

Modeling and Analysis of Multi-type Failures in Wireless Body Area Networks with Semi-Markov Model (무선 신체 망에서 세미-마르코프 모델을 이용한 다중 오류에 대한 모델링 및 분석)

  • Wang, Song;Chun, Seung-Man;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.867-875
    • /
    • 2009
  • The reliability of wireless body area networks is an important research issue since it may jeopardize the vital human life, unless managed properly. In this article, a new modeling and analysis of node misbehaviors in wireless body area networks is presented, in the presence of multi-type failures. First, the nodes are classified into types in accordance with routing capability. Then, the node behavior in the presence of failures such as energy exhaustion and/or malicious attacks has been modeled using a novel Semi-Markov process. The proposed model is very useful in analyzing reliability of WBANs in the presence of multi-type failures.

Efficient Interference Cancellation Scheme for Wireless Body Area Network

  • Bae, Jung-Nam;Choi, Young-Hoon;Kim, Jin-Young;Kwon, Jang-Woo;Kim, Dong-In
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.167-174
    • /
    • 2011
  • In this paper, we propose and simulate an efficient interference cancellation scheme with an optimal ordering successive interference cancellation (SIC) algorithm for ultra wideband (UWB)/multiple-input-multiple-output (MIMO) systems in a wireless body area network (WBAN). When there are several wireless communication devices on a human body, multiple access interference (MAI) usually occurs. To mitigate the effect of MAI and achieve additional diversity gain, we utilize SIC with an optimal ordering algorithm. A zero correlation duration (ZCD) code with robust MAI capability is employed as a spread code for UWB systems in a multi-device WBAN environment. The performance of the proposed scheme is evaluated in terms of the bit error rate (BER). Simulation results confirm that the BER performance can be improved significantly if the proposed interference cancellation scheme and the ZCD code are jointly employed.

Medical BAN 기술 동향

  • Lee, Hyeong-Su
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.104-109
    • /
    • 2008
  • MBAN(Medical Wireless Body Area Network)은 인체 내부에 이식한 장비를 인체 외부에서 모니터링하는 인체 이식형 의료 분야와 인체 표면이나 $3{\sim}5$미터내 인체의 주변에서 일어나는 신체 부착형 의료분야로 정의할 수 있다. 본 고에서는 기존 MBAN으로 사용하고 있던 무선장비들에 대한 각국의 기술 개발 동향을 분석하였으며, 인체 내부와 외부에서의 가장 큰 특성인 인체 전파 특성에 대해서도 분석해 보았다. 그리고 IEEE에서 표준화 작업중인 WBAN(Wireless Body Area Network)의 개념과 추진 상황과 더불어 현재 검토 중인 주파수 대역에 대해서 분석하였다.

Emergency Message Transmission Protocol using CSMA/TDMA in Medical Body Area Networks(MBANs) (Medical Body Area Networks(MBAN)에서 CSMA/TDMA를 이용한 긴급 메시지 전송 프로토콜)

  • Kim, Kyung-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.224-230
    • /
    • 2009
  • In the latest date, medical body area networks (MBANs) are emerging as a new technology for diagnosis the human body. MBANs in the health care fields are based on short-range and low-power (e.g. ubiquitous computing) among small-sized devices, and have been used by means of medical services. In this paper, we proposed an emergency message transmission protocol using carrier sense multiple access/time division multiple access in MBANs. This scheme focuses on dependability and power-efficiency. In order to increase the reliability of the transmission, this scheme modified a MCTA slot of IEEE 802.15.3 standard to a SR-MCTA slot. SR-MCTA slot is assigned by MBAN coordinator according to requesting terminal nodes. The method, having the priority of transmission, occurs a collision packet randomly. Results from this proposed solution revel that reservation-based TDMA medical body area network(MBAN) protocol for transmitting emergency message was improved in terms of transmission delay.

  • PDF