• 제목/요약/키워드: Body valve

검색결과 235건 처리시간 0.03초

Leaflet Fracture and Embolization of a CarboMedics Prosthetic Mitral Valve: Case Report

  • Kim, Tae Yeon;Kim, Myoung Young
    • Journal of Chest Surgery
    • /
    • 제54권5호
    • /
    • pp.419-421
    • /
    • 2021
  • Fracture of prosthetic valve leaflets in the absence of traumatic injury is very rare. Leaflet fracture can cause acute pulmonary edema and cardiogenic shock and is potentially life-threatening, requiring emergency surgery. Thus, a leaflet fracture must be diagnosed quickly and accurately. We present the case of a 46-year-old man with CarboMedics prosthetic aortic and mitral valve replacements implanted 24 years previously. The patient presented at our emergency department with abrupt dyspnea and fever. We diagnosed severe mitral valve regurgitation with anterior leaflet fracture. The patient underwent venoarterial extracorporeal membrane oxygenation and delayed mitral valve replacement. The foreign body was removed step by step because the diagnosis was missed. Two pieces of broken leaflets were found in the left common iliac artery and left external iliac artery. The patient was treated successfully and remains asymptomatic 1 year following surgery.

구조연성해석을 통한 메인스타팅 에어밸브의 경량화설계 (Lightweight Design of a Main Starting Air Valve through FSI Analysis)

  • 이권희;장병현
    • 한국산학기술학회논문지
    • /
    • 제14권11호
    • /
    • pp.5371-5376
    • /
    • 2013
  • 메인스타팅 에어밸브는 선박에서 최초 시동을 위해 장착되는 요소로서 운전 시에는 공기를 차단하는 역할을 한다. 본 연구에서는 기 개발된 50A 메인스타팅 에어밸브의 형상을 기초로 80A 메인스타팅 에어밸브의 기초설계를 제시하였고, 80A 메인스타팅 에어밸브의 개념설계는 CATIA를 이용하여 완성되었다. 그리고 압력분포 및 속도분포등의 유동특성을 검토하기 위해서 유동해석을 수행하였고, 이어서 FSI를 이용한 구조해석을 수행하였다. 이상의 수치해석을 위하여 ANSYS 및 ANSYS CFX 프로그램을 이용하였다. 밸브 몸체의 과도한 중량은 인접 구조요소의 강도를 저해시킬 수 있고 유동특성에도 좋지 못한 영향을 줄 수 있다. 본 논문에서는 80A 밸브의 경량화 설계를 강도성능의 요구조건을 고려하여 제시하였다. 최종 제시한 밸브는 7kg의 경량화를 이루었고 최대응력도 설계기준을 만족시켰다.

유전알고리즘을 이용한 차량용 댐퍼의 최적설계에 관한 연구 (A Study on the Optimization Design of Automotive Damper Using Genetic Algorithm)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제22권6호
    • /
    • pp.80-86
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of car body. It converts the kinetic energy of the shock into another form of energy, typically heat. The main mechanism for providing damping is by shearing the hydraulic fluid as it flows through restrictions. Since the damping mechanism depends on the flow restrictions, these restrictions are very important in damper design. Damper engineers often try several combinations of valve shims, piston orifices and bleed orifices before finding the best combination for a particular setup on a car. Therefore, the ability to tune a damper properly without testing is of great interest in damper design. For this reason, many previous researches have been done on modeling and simulation of the damper. This paper explains a genetic algorithm method to find the optimal parameters for the design objective and the simulation results agree well with the targeted damping characteristics.

실린더 내부 유동장에 대한 흡입 밸브의 편심 효과에 관한 수치적 연구 (A numerical study of the eccentricity effect of the intake valve on the in-cylinder flow field)

  • 양희천;최영기;고상근;허선무
    • 오토저널
    • /
    • 제14권4호
    • /
    • pp.39-49
    • /
    • 1992
  • Three dimensional numerical calculation carried out to investigate the eccentricity effect of intake valve on the in-cylinder flow fields for the intake stroke and the compression stroke. During the intake stroke, a corner vortex in the vicinity of the valve exit interacted strongly with a toroidal vortex in the case of axisymmetric valve. But a weak interaction between the corner vortex and the toroidal vortex occurred due to the eccentricity of the valve in the narrow region between valve and cylinder wall in the case of offset valve. During the compression stroke, it was found that a solid body rotation was maintained in the radial-circumferential plane in the case of axisymmetric valve. But a weak secondary vortex was formed in the radial-circumferntial plane in the case of offset valve, because of the interaction between swirl flows and inward flows towards cylinder axis. The calculated turbulence intensity presented a similar trend with the experiental results but, in spite of using the modified k-.epsilon. model, it was found that the qualitative difference between the numerical results and experimental results was large in the region where the velocity gradient is substantial.

  • PDF

벤더형 고응답 압전밸브의 주파수 특성에 관한 연구 (A Study on Frequency Characteristics of a Bender Type High-Speed Piezoelectric Pneumatic Valve)

  • 윤소남;함영복;박중호;이성수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.14-18
    • /
    • 2012
  • Two kinds of piezoelectric actuator are applied to the valve for controlling the direction, the flow and the pressure of the fluid. One is a stack type piezoelectric actuator which has very fast response characteristics but very tiny displacement. The other is a bender type piezoelectric actuator which has also fast response characteristics but lower than the stack type one, and has longer displacement than the stack type one. So, the bender type piezoelectric actuator has advantage to apply to the valve for controlling a large amount of flow and fast on-off operating. In this study, the bender type piezoelectric pneumatic valve for color sorter is designed and fabricated. The new type high speed piezo valve with the both side supporting mechanism for high operating frequency and high reliability is discussed for separating the foreign body from the grains. Finally, the performance characteristics of a fabricated valve are analyzed and the frequency characteristics are also discussed for substituting the conventional type solenoid actuator.

상수도용 계량 밸브 임펠러 회전수에 따른 유동해석에 관한 연구 (A Study on the Flow Analysis According to Impeller Speed for City Water Supply Measuring Valve)

  • 김태준;이중섭;이치우
    • 한국산업융합학회 논문집
    • /
    • 제26권2_2호
    • /
    • pp.307-313
    • /
    • 2023
  • This study conducts the flow analysis on the basis of the impeller RPM of water metering valve. The software used for the flow analysis is STAR-CCM+. In terms of the structure of the metering valve, it has an impeller installed inside, and a metering chamber has inlet and outlet holes. The flow analysis on the water metering valve drew the following conclusions: Regarding the flow field in the valve, the impeller had the highest velocity distribution, and complex flow field was generated in the metering chamber. In particular, since the path between the inlet and outlet holes in the metering chamber and the valve body was narrow, there was a section that had flow field interference. The flow rate and flow coefficient distribution according to the impeller RPM were on the linear increase. Given that, it showed the feature of the valve used for water metering on the basis of the impeller RPM.

The development of a wear resistant hard-metal tappet in diesel engines

  • Shim, D.S.;Song, K.C.;Kim, K.W.;Cho, J.W.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.401-402
    • /
    • 2002
  • Diesel engines have many sliding parts with solid body contact. For example, a piston-ring and a cylinder bore, a valve and a valve-seat, a cam and a valve tappet. These parts have a severe wear problem. during engine life times. During these times, the valve tappet has abnormal wear such as scuffing and pitting due to a high hertzian contact stress between the cam and the tappet. Excessive wear problems frequently occur to both the cam and the tappet. To solve these problems, we developed an advanced wear resistant tappet. The developed tappet consisted of a hard-metal wear part and a steel body. To increase a bonding strength, those two parts, were directly bonded to each other. Also to decrease a bonding temperature, we developed the composition of Ni-binder materials in the hard metal. To estimate the wear characteristics of the newly developed tappet, we performed wear tests and engine dynamo tests in order to compare them with a conventional Fe-base tappet. As a result, the newly developed tappet has better wear characteristics than those of the conventional tappet. In addition, we performed a 100,000km field-test, and the newly developed tappet showed much improved wear resistance.

  • PDF

압력 평형식 온도조절 밸브 내부 유동 특성에 대한 수치적 연구 (A Numerical Study on the Flow Characteristics of Temperature Control Valve by Pressure Compensation)

  • 황정훈;김태안;김윤제
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.448-453
    • /
    • 2005
  • Temperature Control Valve (TCV) is one of the useful temperature control devices, which is used to control constant temperature of working fluid in power and chemical plants and domestic water supply systems. TCV is composed of body, cylinder and piston, and the body shape has a symmetrical H-type. In general, it has several inlet and outlet holes, and its shape is like as tubular sleeve. The piston has three rings two rings of the end of piston have the function of controlling inlet flow rate with hot and cold working fluids, the center ring has the function of preventing hot and cold water from intermixing. Consequently, the shapes of piston and cylinder are the main design parameters in the performance of TCV. In this study, numerical analyses were carried out with two different piston and cylinder shapes to investigate the functions as a temperature control valve and the flow characteristics according to piston opening grade in TCV. Using a commercial code, FLUENT, velocity and pressure fields in TCV are obtained under steady, standard $k -{\epsilon}$ turbulence model and no-slip condition.

  • PDF

Robust Design of Main Control Valve for Hydraulic Pile Hammer Flexible Control System

  • Guo, Yong;Hu, Jun Ping;Zhang, Long Yan
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권1호
    • /
    • pp.28-38
    • /
    • 2016
  • The flexible control system for hydraulic pile hammer using main control valve is present to the requirement of rapidly reversing with high frequency. To ensure the working reliability of hydraulic pile hammer, the reversing performance of the main control valve should commutate robustness to various interfere factors. Through simulation model built in Simulink/Stateflow and experiment, the effects of relative parameters to reverse performance of main control are analyzed and the main interfere factors for reversing performance are acquired. Treating reverse required time as design objects, some structure parameters as control factors, control pressure, input flow and gaps between spool and valve body as interfere factors, the robust design of the main control valve is done. The combination of factors with the strongest anti-jamming capability is acquired which ensured the reliability and anti-jamming capability of the main control valve. It also provides guidance on design and application of the main control valve used in large flow control with interferes.

Actuator Control of Throttle Valve of An Automobile

  • Lee, Kyung-Moon;Lee, Jung-Yong;Kim, Gun-Tae;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.602-607
    • /
    • 2004
  • Accurate and quick positioning of the throttle valve in driving situation is required to implement the Traction Control System(TCS). Also, unlike a conventional throttle valve which is connected to the accelerator directly by a wire, an Electronic Throttle Valve(ETV) is driven by a DC motor and can move dependently upon the accurate position of the accelerator. In the research, the Electronic Throttle Body(ETB) and Controller for TCS application was developed. In order to drive the DC motor, the developed controller was built and interfaced to the ECU and ETB. The PID position control algorism and developed systems are designed to realize the robust tracking control of the ETV. Actual vehicle tests with these systems and PID position control algorithm. Finally, the performance of the proposed those are evaluated with the experimental studies.

  • PDF