• Title/Summary/Keyword: Body temperature change

Search Result 417, Processing Time 0.029 seconds

Preferred and Suggested Winter Indoor Temperatures of College Students (남녀 대학생의 겨울철 실내 쾌적온도 및 적정온도)

  • Shim, Huen-Sup;Jeong, Woon-Seon
    • The Korean Journal of Community Living Science
    • /
    • v.22 no.3
    • /
    • pp.485-491
    • /
    • 2011
  • This study was to present the preferred and the suggested indoor temperature of college students in winter based on their body composition. A total of 14 subjects(6 males and 8 females) participated in this study. They sat in a climatic chamber controlled at $24^{\circ}C$ wearing experimental garments(0.7clo). The air temperature decreased $1^{\circ}C$ every 15 minutes until it reached $19^{\circ}C$. After the stepwise temperature change, subjects were asked to select a comfortable air temperature by dialing the temperature control switch inside the chamber. The preferred temperature was determined when subjects did not change the air temperature for 10 minutes. The measurements were oxygen consumption, rectal temperature, skin temperature, and subjective sensation. Main results are as follows. In a mild cold condition, females demonstrated lower oxygen consumption and mean skin temperature than males while keeping a constant rectal temperature. Females increased rectal temperature and decreased mean skin temperature greater than males from $24^{\circ}C$ to $19^{\circ}C$. Males showed larger oxygen consumption increase than females. It appears that the thermo-physiological responses in a mild cold condition might be different between males and females. The preferred winter indoor temperature was $22.3^{\circ}C$ for males and $23.4^{\circ}C$ for females, and the suggested temperature was $21^{\circ}C$ for males and $23^{\circ}C$ for females.

Numerical Analysis on Body Temperature Change with Heating Life Vest (발열구명동의 착용에 의한 인체의 체온변화에 관한 수치해석)

  • Kim, Myoung-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.241-245
    • /
    • 2008
  • The characteristics of temperature profile around human body with heating life vest at sea were investigated in this paper. Especially, the temperature profile of human body was numerically calculated by finite difference method with Mathcad. The main parameters were seasonal mean sea water temperature, heating amount and heating duration time of heating life vest. In this paper, the boundary layer was composed by the difference matters, and the thermal conductivity was calculated with an adjacent cells using thermal resistance method. It was clarified that the body temperature was kept highly and the risk of death from hypothermia was reduced by wearing heating life vest.

  • PDF

Effects of Covering Parts of Body with Garments on Human Thermoregulation and Sensation(II) (신체의 부위별 피복이 체온조절 및 주관적인 감각에 미치는 영향(II))

  • 이종민
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.3
    • /
    • pp.339-347
    • /
    • 1994
  • In this study the physiological significance of the upper and lower body on thermoregulation and sensation are examined. Experiments were carried out on 4 females in a climatic chamber conditioned at $25\pm1^{circ}C, 50\pm5%$ R.H.. Before the measurements, subjects were exposed to 3 types of enviromental temperature: 1) $25\pm1^{\circ}C$ for 60 min.(ST), 2) $25^{\circ}C$\rightarrow35^{circ}C\rightarrow25^{\circ}C$ for about 40 min.(HT), 3) $25^{\circ}C$\rightarrow15^{circ}C\rightarrow25^{\circ}C$ for about 40 min.(LT) covering the upper body (U) or lower body (L) with garments. 1) $T_{re}$ was significantly higher in L than in U only in 57 condition. $T_{sk}$ and Temp. under the clothing were higher in U than in L in all three conditions. Thermal sensation was warmer in U than in L, and comport sensation was most comfortable in HT condition. 2) When the upper or lower body was covered or exposed, the mean skin temperature of the upper body was higher than that of the lower body. Following covering and uncovering the same area, the changes in skin temperature were greater in the upper body than in lower body, and covering the upper body produced a greater difference of skin temperature between body and lower body than covering the lower body. 3) In all environmental conditions, when the upper body was uncovered, the skin temperatures of the chest, upper arms and forearms dropped to a considerable degree, and when the lower body was uncovered, skin temperatures of the legs showed the same pattern. On the other hand, skin temperature of the thinghs showed only little change in all cases except forehead and back uncovered or covered in two clothing types.

  • PDF

Physiological Responses of the Human Body on a Change of the Floor Temperature in Indoor (인공기후실내의 바닥온도 변화에 의한 인체의 생리적 반응)

  • Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.1 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • The purpose of this study is to clarify the floor temperature on the human body and to estimate thermal comfort zone in a heated room. In order to evaluate the effects of floor heating, a series of experiments were carried out using Korean subjects. The following experiments were conducted: 1) to obtain the effective radiation area and configuration factors of the person in the sitting posture on a floor to get the mean radiant temperature, 2) to measure contacted area of the person to the floor to calculate conduction heat rate, 3) to measure convective heat transfer coefficient of the body and 4) to know the thermal comfort zone of indoor environment heated by ON-DOL. Subjects were exposed to the following conditions: combinations of air temperature $20^{\circ}C$, $22.5^{\circ}C$, $25^{\circ}C$, and floor temperature $20^{\circ}C$, $22.5^{\circ}C$, $25^{\circ}C$, $27.5^{\circ}C$, $30^{\circ}C$, $32.5^{\circ}C$, $35^{\circ}C$, $37.5^{\circ}C$, $40^{\circ}C$ under still air and 50% relative humidity in the controllable artificial climate chamber. To evaluate the effect of heat conduction between the body and a floor modified mean skin temperature was defined. Weighting coefficient to calculate mean skin temperature were modified with the contacted area. The experiments revealed a positive correlation between the modified operative temperature and the modified mean skin temperature. The modified mean skin temperature can indicate the effect of heat conduction between body and a floor surface.

  • PDF

Effects of Heat Wave on Body Temperature and Blood Pressure in the Poor and Elderly

  • Kim, Young-Min;Kim, So-Yeon;Cheong, Hae-Kwan;Ahn, Byun-Gok;Choi, Kyu-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.13.1-13.10
    • /
    • 2012
  • Objectives: We aimed to investigate the acute effects of heat stress on body temperature and blood pressure of elderly individuals living in poor housing conditions. Methods: Repeated measurements of the indoor temperature, relative humidity, body temperature, and blood pressure were conducted for 20 elderly individuals living in low-cost dosshouses in Seoul during hot summer days in 2010. Changes in the body temperature, systolic blood pressure (SBP) and diastolic blood pressure (DBP) according to variations in the indoor and outdoor temperature and humidity were analyzed using a repeated-measures ANOVA controlling for age, sex, alcohol, and smoking. Results: Average indoor and outdoor temperatures were $31.47^{\circ}C$ (standard deviation [SD], $0.97^{\circ}C$) and $28.15^{\circ}C$ (SD, $2.03^{\circ}C$), respectively. Body temperature increased by $0.21^{\circ}C$ (95% confidence interval [CI], 0.16 to $0.26^{\circ}C$) and $0.07^{\circ}C$ (95% CI, 0.04 to $0.10^{\circ}C$) with an increase in the indoor and outdoor temperature of $1^{\circ}C$. DBP decreased by 2.05 mmHg (95% CI, 0.05 to 4.05 mmHg), showing a statistical significance, as the indoor temperature increased by $1^{\circ}C$, while it increased by 0.20 mmHg (95% CI, -0.83 to 1.22 mmHg) as outdoor temperature increased by $1^{\circ}C$. SBP decreased by 1.75 mmHg (95% CI, -1.11 to 4.61 mmHg) and 0.35 mmHg (95% CI, -1.04 to 1.73 mmHg), as the indoor and outdoor temperature increased by $1^{\circ}C$, respectively. The effects of relative humidity on SBP and DBP were not statistically significant for both indoor and outdoor. Conclusions: The poor and elderly are directly exposed to heat waves, while their vital signs respond sensitively to increase in temperature. Careful adaptation strategies to climate change considering socioeconomic status are therefore necessary.

The Foot Pressure Change Caused by Functional Leg Length Having an Effect on the Foot Temperature (기능적인 하지길이 차이에 따른 족저압 변화가 족부체열에 미치는 영향)

  • Kim, Minju;Kim, Juyeon;Lee, Hyewon;Yim, Juyeon;Ha, Hyunjin;An, Jinho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.2
    • /
    • pp.37-46
    • /
    • 2013
  • Purpose : The purpose of the research was to analyze foot pressure, foot temperature, and correlation between foot pressure and foot temperature to grasp impact on foot pressure and body temperature distribution chart depending on functional difference of leg length. Method : After measuring leg length, put 15 students whose functional difference of leg length was over 10mm to difference group and 15 students whose functional difference of leg length was under 5mm to normal group and categorize soles of foot into 6 sections of hallux head, 1st metatarsal head, 2-4 metatarsal head, 5 metatarsal head, lateral heel, and then measure by foot pressure analyzer to analyze characteristic of pressure distribution and classify into front of the lower leg, back of the lower leg, soles of foot and measure by body temperature analyzer to analyze by checking body temperature. Result : Weight difference depending on foot pressure and body temperature was bigger when functional difference of leg length was bigger, and it could be confirmed that foot pressure and body temperature of short leg side were higher than those of short leg side. Thus, if difference exists in leg length, weight load on short leg side increases which results in higher foot pressure and body temperature, therefore enabling an assumption that mechanical problem will occur in short leg. Conclusion : When functional leg length inequality, weight bearing and pressure was getting high as a result, temperature was getting high in short leg.

Effects of Walking with Non-Electric Power Vibration Shoes on Body Temperature and Peripheral Circulation (무전력형 진동신발 보행이 체온과 말초 혈액순환에 미치는 영향)

  • Lee, Hyun Ju;Lee, Cheong Gn;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.235-241
    • /
    • 2019
  • The purpose of this study was to investigate the effect of the body temperature peripheral circulation with vibration shoes in healthy 10 adults. The magnetic vibration device with non-electric power was mounted in the midsole of the vibration shoes. The experiment was divided into two groups: vibration shoes and no vibration shoes. Subjects were randomly selected and measured body surface temperature by digital infrared thermal imaging (DITI) and non-invasive capillaries change by nailfold microscope (NFM). After walking in a treadmill for 15 minutes at 4.0 km/h speed wearing normal shoes or vibration shoes, DITI and NFM were measured. The walking with vibration shoes showed the body surface temperature shift from the proximal to the distal. In addition, the diameter of the nailfold capillary in the vibration shoes group was thicker and clearer due to the increased blood flow than that of the no vibration shoes group. The vibration shoes are easy to apply to anyone who can walk because it can give vibration stimulation by walking without additional time, cost, and effort in daily life. Further studies are needed to explain the physiological effects of vibration frequency and intensity on the long-term perspective of target subjects resulting from vascular dysfunction.

An Analysis of Temperature Change and TI MI using Tissue Mimicking Phantom in Ultrasonic Examination (초음파검사에서 인체모의 매질팬텀을 이용한 온도 변화와 TI MI 분석)

  • Cheol-Min, Jeon;Jae-Bok, Han;Jong-Gil ,Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.751-759
    • /
    • 2022
  • Currently, ultrasound examination for diagnostic ultrasound and health examination purposes is widely used, and it is showing an increasing trend due to the application of health insurance. However, the risk of ultrasound has not been clearly identified so far, and in this study, surface and deep temperature changes according to frequency and mode were measured by using a tissue mimicking phantom and TI and MI values were compared. A simulated phantom was manufactured by adding a small amount of kappa-caraginan powder with acoustic characteristics similar to that of the human body and potassium chloride for solidification, and the change of surface and depth temperature was measured using a surface thermometer and a probe thermometer. As a result, the convex probe using low frequency showed a higher temperature increase than the linear probe using high frequency, so there was a significant difference, and the temperature increase was the highest on the surface, and the depth of 1cm showed a temporary temperature increase, but there was no significant temperature change. There was no change in the deep temperature of 5 cm to 15 cm, and the TI and MI values did not change during the test time. Since only the surface temperature rose during the 15-minute test and there was no temperature change in the core, so it is not expected to show a temperature change that is harmful to the human body. However, it is thought that prolonged examination of one area may cause temperature rise, so it should be avoided.

Comparative Analysis between Early Minithoracotomy and Conventional Treatment for Empyema (농흉치료에 대한 조기 Minithoracotomy 와 흉관삽관술의 비교연구)

  • 임종수
    • Journal of Chest Surgery
    • /
    • v.22 no.6
    • /
    • pp.1101-1105
    • /
    • 1989
  • Fifty one patients with empyema thoracic were managed at the Kyung Hee University Medical Center during 5 years between December, 1982, and December, 1987. The patients were classified into two groups; group A [early minithoracotomy-9 patients] and group B[conventional chest tube insertion-42 patients]. Each group was retrospectively analyzed to compare the results in terms of leukocyte count change, body temperature change, duration of hospitalization, elapsed time to chest tube removal and the need for subsequent decortication and tube change. There was no statistical difference between two groups in terms of etiology, age and sex. l. In the group A, mean preoperative leukocyte count [19,300/mme] decreased to 8,688/mme postoperatively. In the group B, leukocyte count changed from 16,985/mme to 14,433/mme. Their differences were significant [P< 0.05]. 2. In the group A, mean preoperative body temperature [38.5] decreased to 36.7. In the group B, body temperature changed from 38.1oC to 37.5 oC. Their differences were significant [P < 0.05]. 3. Mean duration of Hospitalization; 18.2 days [group A], 30.2 days [group B]. Their differences were significant [P < 0.01]. 4. Mean elapsing time for chest tube removal; 15.2 days [group A], 28.5 days [group B]. Their differences were significant [P < 0.01]. 5. There was no need for subsequent decortication and chest tube change in the group A. There were 22 cases [52.3 %] for subsequent decortication and 12 cases [28.6 %] for chest tube change in the group B. Early minithoracotomy in treating empyema thoracis resulted in a shorter hospital stay and a shorter period of tube drainage than conventional method.

  • PDF

The Basic Studies of Thermal Physiology for Summer Wears (하복의 온열생리학적 기초연구)

  • Sung Su Kwang;Jeong Hyun Ok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.9 no.2
    • /
    • pp.57-65
    • /
    • 1985
  • In the experiment with a basic material for the design of summer wear that comfort can be obtained in temperature, to get individual differences, clothing styles (slacks, skirt), material differences(T/C, cotton), and the contrast between when naked and dressed, when two healthy females were dressed four kinds of summer wear as an object of experiment under the regular warm temperature environmental condition (24, 28, 32, $36^{\circ}C$, $60\pm10\%$ RH), the measurement of physiological, phychological change was taken and the result goes as follow; 1. Mean skin temperature rose by clothing, body weight loss decreased below $32^{\circ}C$, thermal sensation changed toward low temperature by $2\~3^{\circ}C$. 2. Mean skin temperature, body weight loss, the lowest blood pressure above $32^{\circ}C$, under-clothing temperature, and thermal sensation increased when in slacks to be compared with when in skirt. 3. Ambient temperature had a great effect on mean skin temperature, body weight loss, respiration, clothing surface temperature, under-clothing temperature and humidity, thermal sensation, etc. 4. It was admitted that pulse, thermal sensation, comfort show different individuality. 5. It was recognized that the lowest blood pressure, clothing surface temperature, under. clothing humidity differ according to the kinds of clothing. 6. A comfortable ambient temperature in clothing summer wear was about $27\~28^{\circ}C$.

  • PDF