• Title/Summary/Keyword: Body structure

Search Result 2,704, Processing Time 0.033 seconds

The Review of Bolt-Assembled Car body Structure for Modularization (모듈화를 위한 차체 볼팅 조립구조에 대한 고찰)

  • Choi, Won-Ho;Chang, Dong-Hwa;Jeon, Si-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1661-1667
    • /
    • 2008
  • Recently, a rolling stock has been requiring more efficient manufacturing method than welding for the improved quality and the enhanced fabrication of car body structure. As an alternative, modularization of car body structure is being studied. Accordingly, rolling stock manufacturers need to make it possible to develop a variety of rolling stock vehicles made from modularized sub-blocks in order to meet various customer's demands. The bolt-assembled car body structure for modularization is known to have many advantages over the existing weld-assembled method and is free from the possible welding defects, such as welds between dissimilar metals, crack, deformation and loss of strength. Consequently, we can have the improved overall quality, the reduced man powers for assembly and the satisfied strength of car body structure. The review is about the bolt-assembled car body structure for modularization to assure global competitiveness and an enhanced technique in terms of assembly methodology of car body structure.

  • PDF

Structure Analysis of Body Structure for Electrical Multiple Unit (전동차 구조체의 구조해석 연구)

  • 윤성철;백광선;권성태;김명룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1335-1338
    • /
    • 2004
  • This paper describes the result of structure analysis of body structure. The purpose of the analysis is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Material of body structure applied an aluminum alloy. Body structure consist of side frame, under frame, roof frame, end frame. FEM analysis is based on 'Performance Test Standard for Electrical Multiple Unit, noticed by Ministry of Construction & Transportation, in 2000 ' and reference code is JIS E 7105. The analysis results have been very safety and stable for design load conditions.

  • PDF

Identification of Rigid Body Properties of the Mounted Structure with Improved Mass-Lines from Impact Hammer Tests (탄성지지된 구조물의 충격 햄머 실험에서 질량선의 개선을 통한 향상된 강체 특성 규명법)

  • Ahn, Se-Jin;Jeong, Weui-Bong;Hwang, Dae-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.317-322
    • /
    • 2002
  • There are many researches to identify the rigid body properties from the mass-line obtained by impact hammer testing. The correct rigid body properties of the structure may be estimated if the mass-line of the structure could be obtained exactly. When the structure is mounted by elastic materials, the mass-line cannot be read correctly from the impulse response spectrum. The reason is due to the effects of rigid body modes of mounted structure. In this paper, the effects of rigid body modes of mounted structure to the mass-line are discussed and the method to remove these effects is also presented.

  • PDF

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

Construction of men's tailored jackets - Incorporating human muscle structure in fashion design - (인체 근육 구조를 적용한 남성 테일러드 재킷 디자인)

  • Lee, Hanchul;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.6
    • /
    • pp.934-950
    • /
    • 2018
  • This study suggests a new perspective for designing men's tailored jackets by more carefully considering human muscle structure. For this study, we examined research regarding the construction of the tailored jacket that is based on costume history references, as well as research regarding human muscle structure that is based on human anatomy references and the analysis of recent fashion designs illustrating the human body image. Based on this research, we developed various tailored constructions that account for human muscle structure. These constructions are applied primarily to the backs of four tailored jackets, as the back of the jacket needs a mechanism to accommodate the wearer's movement. The following conclusions have been derived from the study: First, by developing the tailored garment structure that accounts for the muscle structure of the human body, we suggest a new design direction for tailored garments. Second, we propose a new type of tailored jacket structure for the back of the jacket that incorporates an artificial muscle structure to accommodate the wearer's activities. This new type of jacket indicates the potential for designs that use structure, particularly the structure of the human body. Finally, by using the embroidery technique, we changed the texture of the material into the shape of human muscle. Thus, we propose a design that uses three-dimensional volume to accounts for the shape of human body tissue.

The Identification of Rigid Body Properties with Improved Mass-Lines from Impact Hammer Tests of The Mounted Structure (탄성지지된 구조물의 충격 햄머 실험에서 질량선의 개선을 통한 향상된 강체 특성 규명법)

  • Ahn, Se-Jin;Jeong, Weui-Bong;Hwang, Dae-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.336.2-336
    • /
    • 2002
  • There are many researches to identify the rigid body properties from the mass-line obtained by impact hammer testing. The correct rigid body properties of the structure may be estimated if the mass-line of the structure could be obtained exactly. When the structure is mounted by elastic materials, the mass-line cannot be read correctly from the impulse response spectrum. The reason is due to the effects of rigid body modes of mounted structure. (omitted)

  • PDF

Structural Strength Evaluation of a Carbody by Finite Element Analysis and Tests (구조해석 및 시험에 의한 경량화 차체 구조강도 평가)

  • Yoon S.C.;Kim W.K.;Jun C.S.;Kim M.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.49-54
    • /
    • 2005
  • This paper describes the result of structure analysis and load test of body structure. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Material of body structure applied an aluminum alloy. Body structure consist of side frame, under frame, roof frame, end frame. Both FEM analysis and load test are based on 'Performance Test Standard for Electrical Multiple Unit, noticed by Ministry of Construction & Transportation, in 2000' and reference code is JIS E 7105. The test results have been very safety and stable fer design load conditions.

  • PDF

The Recognition of Body Shape and the Attitude toward Weight Control of Middle School Students (중학생의 체형에 대한 인식 및 체중 조절태도 - 강원도 영월군을 중심으로-)

  • 이요원;임양순
    • Journal of Korean Home Economics Education Association
    • /
    • v.10 no.1
    • /
    • pp.17-27
    • /
    • 1998
  • The purpose of this study was to investigate the recognition of body shape, the difference between self-evaluated obesity and obesity index of RBW, and attitude toward weight control of middle students. The questionnaires were completed by 195 male and 189 female students of liveing in Yongwol county. The average stature of the boys is 166.97$\pm$6.21cm, the girls is 158.13$\pm$5.83cm, and the average weight of the boys is 57.97$\pm$12.39kg, the girls is 52.88$\pm$8.35kg. 2. In the present body structure of them, the underweight structure is 6.0%, the normal weight structure is 87.2%, and the overweight structure is 6.7%. In the recognition of their own body structures, there are meaningful differences between boys and girls. 3. In the contentment degree of the present body structure of their own, the underweiht structure is much more satisfied with it.(p〈0.001) It shows a meaningful difference between boys and girls. 25.6% boys are satisfied with their own body structures, and 7.4% girls are satisfied with it.(p〈0.001) 4. In the interest degree about the weight's control, 87.1% is interested in it, it is lower in the underweight structure. 88.0% girls and 77.4% boys are interested in the weight's control. There is a meaningful difference between boys and girls, too.(p〈0.001) Each of the weight groups has differences in a experienced or experiencing for the weight's control. 5. The recognition degree of the present body structure showed the meaningful positive relation to the contentment degree of the present body structure and the weight's control.(p〈0.001)

  • PDF

A Study on the Structural Analysis and Test of an Electric Car-Body (전동차 차체 구조물에 대한 구조해석 및 실험에 관한 연구)

  • 전형용;성낙원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.28-36
    • /
    • 1998
  • This investigation is the result of a structural analysis by the finite element method and static loading test for the optimal structural design of an electric railway vehicle made of stainless 301L materials. We analyzed the stress and displacement of the existing electric car-body structure for predicting the position of concentrated stress, the flow of stress, rigidity to be occurred in the car-body structure when it is subjected to the vertical load. It was exposed that the side sills and window corners around the bolsters are the weak parts of the electric car-body structure because the bolsters of the electric car-body structure were subjected to the vertical load and dynamic load to be occurred during running. The flow of stress and the cause of stress concentration in the weak zone were studied in order to prevent the concentration of stress and buckling. The rearrangement of the structure and the selection of the beam elements were also carried out for optimum design of the structure.

  • PDF

Effects of Three-Body Interactions on the Stability of Small Carbon Clusters (3체 인력이 탄소 cluster들의 안정도에 미치는 효과)

  • Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.1 no.2
    • /
    • pp.86-92
    • /
    • 1991
  • A potential energy function comprising a two-body potential term which is modified form Morse potential and a three-body potential term which is modified from Axilrod-Teller potential has been developed for small carbon clusters. The structural changes of small carbon clusters $C_2-C_6$ are qualitatively investigated by employing this potential energy function representing the energies of the small carbon cluster isotopes as a function of the three body intensity factor. It is found that the structure of the small carbon cluster changes from open structure to closed one, from complicated structure to simple one, and from three-dimensional structure to two-or-one dimensional one as the degree of the three-body interaction increases.

  • PDF