• 제목/요약/키워드: Body stiffness

검색결과 495건 처리시간 0.028초

서스펜션 성능 확보를 위한 고강성 차페 개발 프로세스 연구 (A Study on the Development of High Stiffness Body for Suspension Performance)

  • 김기창;김찬묵
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.799-805
    • /
    • 2005
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of Passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band. we can suggest the design guideline about lg cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle Is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between handling and road noise. It makes possible to design the good handling performance vehicle and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

서스펜션 성능 확보를 위한 고강성 차체 개발 프로세스 연구 (A Study on the Development of High Stiffness Body for Suspension Performance)

  • 김기창;김찬묵
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.358-361
    • /
    • 2004
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy. This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band, we can suggest the design guideline about Is cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between Handling and road noise. It makes it possible to design the good handling performance vehicle at initial design stage and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

강성 배분비를 괴려한 고강성 경량화 차체 설계 (Design of high stiffness and lightweight body for stiffness distribution ratio)

  • 양희종;김기창;임홍재;김찬묵
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.562-566
    • /
    • 2006
  • Lightweight body can cause a low stiffness due to the decrease of panel thickness and reinforcing member. The other way, high stiffness body demands an increase of mass. Front pillar section area is decreased due to driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at side body structure. This paper will describe a process used to evaluate the stiffness distribution ratio based on research of strain energy analysis of the tip rotation method. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio. In this way the designer will be aided by a defined design guide and a set of supporting tool to help him work towards a good design

  • PDF

ANALYSIS PROCESS APPLIED TO A HIGH STIFFNESS BODY FOR IMPROVED VEHICLE HANDLING PROPERTIES

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.629-636
    • /
    • 2007
  • This paper describes the process of analyzing vehicle stiffness in terms of frequency band in order to improve vehicle handling. Vehicle handling and ride comfort are highly related to the systems such as suspension, seat, steering, and the car body design. In existing analytical processes, the resonance frequency of a car body is designed to be greater than 25 Hz in order to increase the stiffness of the body against idle vibration. This paper introduces a method for using a band with a frequency lower than 20 Hz to analyze how stiffness affects vehicle handling. Accordingly, static stiffness analysis of a 1g cornering force was conducted to minimize the deformation of vehicle components derived from a load on parts attached to the suspension. In addition, this technology is capable of achieving better performance than older technology. Analysis of how body attachment stiffness affects the dynamic stiffness of a bushing in the attachment parts of the suspension is expected to lead to improvements with respect to vehicle handling and road noise. The process of developing a car body with a high degree of stiffness, which was accomplished in the preliminary stage of this study, confirms the possibility of improving the stability performance and of designing a lightweight prototype car. These improvements can reduce the time needed to develop better vehicles.

강성 배분비를 고려한 고강성화 경량화 차체 설계 (Design of High Stiffness and Lightweight Body for Stiffness Distribution Ratio)

  • 양희종;김기창;임시형;김찬묵;임홍재
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.901-906
    • /
    • 2007
  • Lightweight body due to the decrease of panel thickness and reinforcing member might cause low stiffness. On the other hand, high stiffness body requires an increase of mass. Front pillar section area has been decreased for increasing the driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at a side body structure. This paper describes a process used to evaluate the stiffness distribution ratio based on strain energy. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio.

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.

여유구동을 지닌 인체의 능동스프링 현상에 대한 해석과 운동주파수 제어방식으로의 적용 (Analysis on Active spring effect in human-body having redundant actuation with application to motion frequency)

  • 이병주
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.977-989
    • /
    • 1999
  • The purpose of this study is to analyze how the human body having more muscles than its degree-of-freedom modulates an effective stiffness using redundant actuation, and to apply this concept to the design and control of advanced machines which requires adaptable spring. To investigate the adaptable stiffness phenomenon due to redundant actuation in the human body, this paper derives a general stiffness model of the Human body. In particular, for a planar 1 DOF human arm model, a planar 2 DOF human arm model, a spherical 3 DOF shoulder model, a 4 DOF human arm model, and a 7 DOF human arm model, the required nonlinear geometry ad the number of required actuator for successful modulation of the effective stiffness are analyzed along with a load distribution method for modulation of the required stiffness of such systems. Secondly, the concept of motion frequency modulation is introduced to show the usefulness of adaptive stiffness modulation. The motion frequency modulation represents a control of stiffness and / or inertia properties of systems. To show the effectiveness of the proposed algorithm, simulations are performed for 2 DOF anthropomorphic robot.

  • PDF

스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구 (A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle)

  • 사종성;김찬묵
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.671-675
    • /
    • 2001
  • Elastomers, which are engine mounts and body mounting rubbers, are traditionally designed for NVH use in vehicles, and they are designed to isolate specific unwanted frequencies. According to the measurement of the characteristics of engine mounts and body mounting rubbers, dynamic stiffness changes with respect to the driving miles accumulated in engine mounts and initial load in body mounting. This study looks at the variability in same engine mount properties, and the desired dynamic stiffness may increased with driving miles accumulated. And the dynamic stiffness of body mounting rubber changes very stiff above 150Hz.

  • PDF

사람의 강성이 교량의 거동에 미치는 영향 (The Effects of the Human-body Stiffness on the Response of the Footbridge)

  • 신혜린
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.261-266
    • /
    • 2000
  • This paper consider the effects of the human-body stiffness on the response of the footbridge to ground shaking by an earthquake. A mass-spring, suggested by Tianjian Ji(1999), describing the stiffness of the human body and an inert mass specified in the Code as the appropriate human whole-body model are used and the responses of the structure in both cases to ground shaking are were compared. Finally this paper ascertains whether the consideration of the human body as a mass is safe in the aseismic design.

  • PDF

프레임 차량의 주행 진동 저감을 위한 프레임 부시 복소동강성계수 크기 결정에 관한 연구 (A Study on Determination of Complex Stiffness of Frame Bush for Ride-comfort Improvement of Body-on-frame Vehicle)

  • 정면규;김기선;김광준
    • 한국소음진동공학회논문집
    • /
    • 제16권6호
    • /
    • pp.619-626
    • /
    • 2006
  • Body-on-frame type vehicle has a set of frame bushes between body and frame for vibration isolation. Such frame bushes are important vibration transmission paths to passenger space for excitations during driving. In order to reduce the vibration level of passenger space, therefore, change of complex stiffness of the frame bushes is more efficient than modification of other parts of the vehicle such as body, frame and suspension. The purpose of this study is to reduce the vibration level for ride comfort by optimization of complex stiffness of frame bushes. In order to do this, a simple finite element vehicle model was constructed and complex stiffness of the frame bushes was set to be design variables. The objective function was defined to reflect frequency dependence of passenger ride comfort. Genetic algorithm and sub-structure synthesis were applied for minimization of the objective function. After optimization level at a position of interest on the car body was reduced by about 43.7 % in RMS value. Causes for optimization results are discussed.