• 제목/요약/키워드: Body sensor networks

검색결과 64건 처리시간 0.023초

의료 센서 네트워크에서의 효율적인 전송 구조 및 Key Provisioning을 사용한 키 관리 기법 연구 (Efficient Transmission Structure and Key Management Mechanism Using Key Provisioning on Medical Sensor Networks)

  • 서재원;김미희;채기준
    • 정보처리학회논문지C
    • /
    • 제16C권3호
    • /
    • pp.285-298
    • /
    • 2009
  • 유비쿼터스 기술의 발전과 함께 센서 네트워크는 다양한 분야에서 활용되고 있다. 그 중 특히 의료 분야는 중요한 응용 분야 중의 하나로 바디 센서 네트워크의 표준화 동향과 함께 관심이 집중되고 있다. 의료 센서 네트워크는 기존의 일반적인 환경의 센서 네트워크와는 다른 의료 환경만의 특징들을 가지고 있다. 따라서 본 논문에서는 이와 같은 특징들을 반영하여 계층적인 의료 센서 네트워크 구조를 제안하였고, 계층적인 구조를 바탕으로 하여 센싱 데이터 전송 방식을 소개하였다. 즉, 효율적인 센싱 데이터 전송을 위해서는 환자들의 요구 사항과 건강 상태를 고려하여 각 센서 노드들에게 우선 순위(Priority)와 경계값(Threshold Value)을 주었다. 이를 통해 클러스터 헤드에서 응급 데이터를 우선적으로 빠르게 베이스스테이션으로 전송하도록 하였다. 또한 이와 같은 구조와 전송 방식을 바탕으로 센서 네트워크를 위해 Eschenauer와 Gligor가 제안한 키 메커니즘을 기반으로 하여 새로운 키 관리 기법을 제안하였다. 이는 각 클러스터 헤드들이 높은 우선 순위를 갖는 응급 노드들에 대해서 이웃 클러스터로 응급 노드와의 키를 미리 전송해주는 Key Provisioning 방법을 사용하여 응급 노드들에 대해서 키 설립을 준비하도록 하여 키 설립이 보다 빠르게 이루어지도록 하였다. 이를 통해 키 설립 지연으로 인한 데이터 전송의 기다림 없이 바로 응급 노드들의 데이터를 클러스터 헤드로 전송할 수 있도록 한다. 이와 같은 계층적인 구조에서의 데이터 전송 방식과 이를 바탕으로 제안한 키 관리 기법은 수식 및 QualNet 시뮬레이터를 사용한 시뮬레이션을 통하여 네트워크 트래픽 오버헤드와 에너지 소모량을 분석하였으며, TmoteSKY 센서보드를 사용해 구현함으로써 그 효율성을 증명하고 실제 응용환경에서의 실현가능성을 입증하였다.

Schedule communication routing approach to maximize energy efficiency in wireless body sensor networks

  • Kaebeh, Yaeghoobi S.B.;Soni, M.K.;Tyagi, S.S.
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.225-234
    • /
    • 2018
  • E-Health allows you to supersede the central patient wireless healthcare system. Wireless Body Sensor Network (WBSN) is the first phase of the e-Health system. In this paper, we aim to understand e-Health architecture and configuration, and attempt to minimize energy consumption and latency in transmission routing protocols during restrictive latency in data delivery of WBSN phase. The goal is to concentrate on polling protocol to improve and optimize the routing time interval and schedule communication to reduce energy utilization. In this research, two types of network models routing protocols are proposed - elemental and clustering. The elemental model improves efficiency by using a polling protocol, and the clustering model is the extension of the elemental model that Destruct Supervised Decision Tree (DSDT) algorithm has been proposed to solve the time interval conflict transmission. The simulation study verifies that the proposed models deliver better performance than the existing BSN protocol for WBSN.

The Design of mBodyCloud System for Sensor Information Monitoring in the Mobile Cloud Environment

  • Park, Sungbin;Moon, Seok-Jae;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, introduced a cloud computing technology to the IT industry, smart phones, it has become possible connection between mobility terminal such as a tablet PC. For dissemination and popularization of movable wireless terminal, the same operation have focused on a viable mobile cloud in various terminal. Also, it evolved Wireless Sensor Network(WSN) technology, utilizing a Body Sensor Network(BSN), which research is underway to build large Ubiquitous Sensor Network(USN). BSN is based on large-scale sensor networks, it integrates the state information of the patient's body, it has been the need to build a managed system. Also, by transferring the acquired sensor information to HIS(Hospital Information System), there is a need to frequently monitor the condition of the patient. Therefore, In this paper, possible sensor information exchange between terminals in a mobile cloud environment, by integrating the data obtained by the body sensor HIS and interoperable data DBaaS (DataBase as a Service) it will provide a base of mBodyCloud System. Therefore, to provide an integrated protocol to include the sensor data to a standard HL7(Health Level7) medical information data.

Cryptanalysis of an 'Efficient-Strong Authentiction Protocol (E-SAP) for Healthcare Applications Using Wireless Medical Sensor Networks'

  • Khan, Muhammad Khurram;Kumari, Saru;Singh, Pitam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권5호
    • /
    • pp.967-979
    • /
    • 2013
  • Now a day, Wireless Sensor Networks (WSNs) are being widely used in different areas one of which is healthcare services. A wireless medical sensor network senses patient's vital physiological signs through medical sensor-nodes deployed on patient's body area; and transmits these signals to devices of registered medical professionals. These sensor-nodes have low computational power and limited storage capacity. Moreover, the wireless nature of technology attracts malicious minds. Thus, proper user authentication is a prime concern before granting access to patient's sensitive and private data. Recently, P. Kumar et al. claimed to propose a strong authentication protocol for healthcare using Wireless Medical Sensor Networks (WMSN). However, we find that P. Kumar et al.'s scheme is flawed with a number of security pitfalls. Information stored inside smart card, if extracted, is enough to deceive a valid user. Adversary can not only access patient's physiological data on behalf of a valid user without knowing actual password, can also send fake/irrelevant information about patient by playing role of medical sensor-node. Besides, adversary can guess a user's password and is able to compute the session key shared between user and medical sensor-nodes. Thus, the scheme looses message confidentiality. Additionally, the scheme fails to resist insider attack and lacks user anonymity.

An Analysis on the Effects of Cluster Leadership Rotation among Nodes Using Least Temperature Routing Protocol

  • Encarnacion, Nico;Yang, Hyunho
    • Journal of information and communication convergence engineering
    • /
    • 제12권2호
    • /
    • pp.104-108
    • /
    • 2014
  • The field of body sensor networks has attracted interest of many researchers due to its potential to revolutionize medicine. These sensors are usually implanted inside the human body and communicate among themselves. In the process of receiving, processing, or transmitting data, these devices produce heat. This heat damages the tissues surrounding the devices in the case of prolonged exposure. In this paper, to reduce this damages, we have improved and evaluated two protocols-the least temperature routing protocol and adaptive least temperature routing protocol-by implementing clustering as well as a leadership rotation algorithm. We used Castalia to simulate a basic body area network cluster composed of 6 nodes. A throughput application was used to simulate all the nodes sending data to one sink node. Simulations results shows that improved communication protocol with leadership rotation algorithm significantly reduce the energy consumption as compared to a scheme without leadership rotation algorithm.

Design of Coordinator Based on Android for Data Collection in Body Sensor Network

  • Min, Seongwon;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • 제5권2호
    • /
    • pp.98-105
    • /
    • 2017
  • Smartphones are fast growing in the IT market and are the most influential devices in our daily life. Smartphones are being studied for their use in body sensor networks with excellent processing power and wireless communication technology. In this paper, we propose a coordinator design that provides data collection, classification, and display using based on Android-smartphone in multiple sensor nodes. The coordinator collects data of sensor nodes that measure biological patterns using wireless communication technologies such as Bluetooth and NFC. The coordinator constructs a network using a multiple-level scheduling algorithm for efficient data collection at multiple sensor nodes. Also, to support different protocols between heterogeneous sensors, a data sheet recording wireless communication protocol information is used. The designed coordinator used Arduino to test the performance of multiple sensor node environments.

Adaptive GTS allocation scheme with applications for real-time Wireless Body Area Sensor Networks

  • Zhang, Xiaoli;Jin, Yongnu;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1733-1751
    • /
    • 2015
  • The IEEE 802.15.4 standard not only provides a maximum of seven guaranteed time slots (GTSs) for allocation within a superframe to support time-critical traffic, but also achieves ultralow complexity, cost, and power in low-rate and short-distance wireless personal area networks (WPANs). Real-time wireless body area sensor networks (WBASNs), as a special purpose WPAN, can perfectly use the IEEE 802. 15. 4 standard for its wireless connection. In this paper, we propose an adaptive GTS allocation scheme for real-time WBASN data transmissions with different priorities in consideration of low latency, fairness, and bandwidth utilization. The proposed GTS allocation scheme combines a weight-based priority assignment algorithm with an innovative starvation avoidance scheme. Simulation results show that the proposed method significantly outperforms the existing GTS implementation for the traditional IEEE 802.15.4 in terms of average delay, contention free period bandwidth utilization, and fairness.

RFID를 이용한 헬스시스템에서의 정보보안 향상을 인증 메카니즘 분석 (Analyses of Enhancement of Authentication Mechanism for Security and Privacy Under Healthcare System With RFID Application)

  • 김정태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.154-156
    • /
    • 2012
  • This paper presents a user authentication scheme for healthcare application using wireless medical sensor networks, where wireless medical sensors are used for patients monitoring. These medical sensors' sense the patient body data and transmit it to the professionals (e.g., doctors, nurses, and surgeons). Since, the data of an individual are highly vulnerable; it must ensures that patients medical vital signs are secure, and are not exposed to an unauthorized person. In this regards, we have proposed a user1 authentication scheme for healthcare application using medical sensor networks. The proposed scheme includes: a novel two-factor professionals authentication (user authentication), where the healthcare professionals are authenticated before access the patient's body data; a secure session key is establish between the patient sensor node and the professional at the end of user authentication. Furthermore, the analysis shows that the proposed scheme is safeguard to various practical attacks and achieves efficiency at low computation cost.

  • PDF

무선 생체 센서 네트워크에 관한 연구 (A Study on the Wireless Biomedical Sensor Networks)

  • 길세기;신동범;유제군;이응혁;민홍기;홍승홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.1185-1188
    • /
    • 2005
  • Recently, ubiquitous computing and sensor networks are making a rapid development. These technology can enable a new way of biomedical signal processing and healthcare. that is, they can improve care giving by a more flexible acquisition of relevant vital sign data, and by providing more convenience for patients. In this paper, we realize the biomedical sensor networks by applying IEEE 802.15.4/Zigbee networks to some various biomedical sensing unit. For address this, we developed minimized zigbee module and set-up procedure using PDA. The main advantages that we achieve are interference-free operation of different body sensor networks in the vicinity, as well as intuitive usage by the nontechnical personnel.

  • PDF

RFID와 무선 센서네트워크를 융합한 프로토콜에서의 보안 문제 (Security Issues in Combined Protocol Between RFID Application and Wireless Sensor Network)

  • 김정태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.154-155
    • /
    • 2013
  • 본 논문에서는 무선 센서네트워크망을 이용한 헬스케어 시스템에서의 사용자 인증을 위한 프레임에서의 보안 문제를 해석하였다. 이러한 메디컬 센서 데이타는 환자의 몸으로 부터 신호를 받아 의사 등과 스태프에게 정보를 전달한다. 개개인의 정보가 취약성을 가지고 있으며, 비 인가된 제 3자에게 노출되고 있다. 따라서, 본 논문에서는 두 가지의 요소를 가진 사용자 인증 프로토콜을 설계할 때 문제시 되는 방법을 분석하였다. 또한 이러한 프로토콜에서 발생 가능한 위협 요소를 정의하였다.

  • PDF