• 제목/요약/키워드: Body segment

검색결과 304건 처리시간 0.022초

Effect of archwire stiffness and friction on maxillary posterior segment displacement during anterior segment retraction: A three-dimensional finite element analysis

  • Park, Choon-Soo;Yu, Hyung-Seog;Cha, Jung-Yul;Mo, Sung-Seo;Lee, Kee-Joon
    • 대한치과교정학회지
    • /
    • 제49권6호
    • /
    • pp.393-403
    • /
    • 2019
  • Objective: Sliding mechanics using orthodontic miniscrews is widely used to stabilize the anchorage during extraction space closure. However, previous studies have reported that both posterior segment displacement and anterior segment displacement are possible, depending on the mechanical properties of the archwire. The present study aimed to investigate the effect of archwire stiffness and friction change on the displacement pattern of the maxillary posterior segment during anterior segment retraction with orthodontic miniscrews in sliding mechanics. Methods: A three-dimensional finite element model was constructed. The retraction point was set at the archwire level between the lateral incisor and canine, and the orthodontic miniscrew was located at a height of 8 mm from the archwire between the second premolar and first molar. Archwire stiffness was simulated with rectangular stainless steel wires and a rigid body was used as a control. Various friction levels were set for the surface contact model. Displacement patterns for the posterior and anterior segments were compared between the conditions. Results: Both the anterior and posterior segments exhibited backward rotation, regardless of archwire stiffness or friction. Among the conditions tested in this study, the least undesirable rotation was found with low archwire stiffness and low friction. Conclusions: Posterior segment displacement may be unavoidable but reducing the stiffness and friction of the main archwire may minimize unwanted rotations during extraction space closure.

보행 시 노인의 상체 움직임에 대한 3차원적 분석 (The Three Dimensional Analysis of the Upper Body's Segments of the Elderly during Walking)

  • 김희수;윤희중;류지선;김태삼
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.1-15
    • /
    • 2004
  • The purpose of this study was to investigate the kinematic variables of the upper part of the body for 8 elderly men during walking. For this study, kinematic data were collected using a six-camera (240Hz) Qualisys ProReflex system. The room coordinate system was right-handed and fixed in space, with righted orthogonal segment coordinate systems defined for the head, trunk, and pelvis. Based on a rigid body model, reflective marker triads were attached on the 3 segments. Three-dimensional Cartesian coordinates for each marker were determined at the time of recording using a nonlinear transformation(NLT) technique with ProReflex software (Qualisys, Inc.). Coordinate data were low-pass filtered using a fourth-order Butterworth with cutoff frequency of 6Hz. Three-dimensional angles of the head, trunk, and pelvis segment were determined using a Cardan method. On the basis of each segment angle, angle-angle plot used to estimated the movement coordinations between segments. The conclusions were as follows; (1) During the support phase of walking, the elderly people generally kept their, head the flexional and abductional posture. Particularly, the elderly displayed little internal/external rotation. (2) The elderly people showed extensional and external rotation postures in the trunk movement. Particularly, It showed the change from adduction into abduction at the heel contact event of the stance phase. (3) The elderly people showed almost same pelvis movement from the flexion into extension, from the abduction into adduction, and from internal rotation into external rotation at the mid stance and toe off of the stance phase.

스쿼시 포핸드 드라이브 동작의 임팩트시 운동학적 주요요인 분석 (An Analysis on Kinematically Contributing Factors at Impact of Forehand Drive Motion in Squash)

  • 이경일;이희경
    • 한국운동역학회지
    • /
    • 제17권1호
    • /
    • pp.29-39
    • /
    • 2007
  • This study were obtained elapsed time phase-by-phases, displacement, user angle, velocity and angular velocity to analyse kinematically contributing factors at impact of forehand drive motion, on targeting three male players. The results of the study were presented as follows; In the forehand drive swing, the elapsed time by phases was a total of .52 seconds: .30 seconds from backswing to impact and .22 seconds from impact to follow-through, Considering the mean change in locations of COM of each(part$\rightarrow$body segment) at impact, racket head, left shoulder, right wrist and left hip, the left-right directions(X-axis) were showm to be each $.61{\pm}.03$, $1.19{\pm}.08$, $.66{\pm}.03$, $.94{\pm}.06$, and $.45{\pm}.03m$. The displacement differences of COM of each body segment were shown to be -.57, -.05, -.33, and .16m. For the vertical direction(Z-axis), the center of mass was lowest at impact and highest at E3. For the displacement of the right wrist on the left hip, the right wrist moved to .82m to the lower direction without change in the locations of the hip from E1 from E2. When the left hip moved .02m from E2 to E3, the right wrist moved .7m in the upper direction. In respect to the velocity of each body segment, the hip and the shoulder joint accelerated and then the wrist followed. Then the right wrists of all the subjects and their racket heads showed maximum speed, and an effective swing was observed. At the angle of each part, the angle of the right wrist was the smallest at the backswing and the largest at the moment of the impact. Then it increased gradually in the follow-through section. In respect of angular velocity for subject A, the hip moved and the largest change occurred. Immediately before the impact, the subject made a swing using his right wrist, his hip, and the shoulder joint, showing the maximum value, which was judged to be effective.

시각기반 웜 자세의 기구학적 모형화 (Vision-based Kinematic Modeling of a Worm's Posture)

  • 도용태;탄콕키옹
    • 제어로봇시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.250-256
    • /
    • 2015
  • We present a novel method to model the body posture of a worm for vision-based automatic monitoring and analysis. The worm considered in this study is a Caenorhabditis elegans (C. elegans), which is popularly used for research in biological science and engineering. We model the posture by an open chain of a few curved or rigid line segments, in contrast to previously published approaches wherein a large number of small rigid elements are connected for the modeling. Each link segment is represented by only two parameters: an arc angle and an arc length for a curved segment, or an orientation angle and a link length for a straight line segment. Links in the proposed method can be readily related using the Denavit-Hartenberg convention due to similarities to the kinematics of an articulated manipulator. Our method was tested with real worm images, and accurate results were obtained.

RANS 기반의 세장체 이론을 이용한 선형 조종 유체력 미계수 추정에 관한 연구 (Prediction Method for Linear Maneuvering Hydrodynamic Derivatives Using Slender Body Theory Based on RANS)

  • 이성욱
    • 한국해양공학회지
    • /
    • 제31권5호
    • /
    • pp.340-345
    • /
    • 2017
  • It is important to predict the hydrodynamic maneuvering derivatives, which consist of the forces and moment acting on a hull during a maneuvering motion, when estimating the maneuverability of a ship. The estimation of the maneuverability of a ship with a change in the stern hull form is often performed at the initial design stage. In this situation, a method that can reflect the change in the hull form is necessary in the prediction of the maneuverability of the ship. In particular, the linear hydrodynamics maneuvering derivatives affect the yaw checking motion as the key factors. In the present study, static drift calculations were performed using Computational Fluid Dynamics (CFD) based on Reynolds Average Navier-Stokes (RANS) for a 40-segment hull. A prediction method for the linear hydrodynamic maneuvering derivatives was proposed using the slender body theory from the distribution of the lateral force acting on each segment of the hull. Moreover, the results of a comparison study to the model experiment for KVLCC1 performed by KRISO are presented in order to verify the accuracy of the static drift calculation. Finally, the linear hydrodynamic maneuvering derivatives obtained from both the model test and calculation are compared and presented to verity the usefulness of the method proposed in this study.

한국인 신체분절에 관한 사상의학적 연구 (The Study on the Biomechanical Body Segment Parameters of Korean Adults with References to Sasang Constitutional Medicine)

  • 이의주;이재구;김정연;송정모
    • 사상체질의학회지
    • /
    • 제10권1호
    • /
    • pp.143-160
    • /
    • 1998
  • 연구목적 한국인 성인남녀를 대상으로한 신체분절에 관한 사상의학적 연구이다. 생체를 8-10분절로 분획하고 인체계측 및 침수법(Immersion Method) 및 평형측정판법(Reaction Board Method)을 이용하여 각 신체분절의 생체역학적 특성을 사상체질별로 객관화한다. 연구대상 연구대상자는 한국인 성인으로 남자 49명 여자 23명으로 총72명이며, 평균연령은 $29.4{\pm}8.54$세이고 태음인 30명, 소양인 17명, 소음인 25명이었다. 연구방법 인체계측항목중 신체분절길이 및 둘레와 골폭 및 스킨폴드 두께는 Lohman 등(1988)의 인체계측 부위 및 방법에 따라 42개 항목과 사초부위의 9항목으로 총 51개 항목을 측정하였다. 사지의 측정은 우측을 선택하였다. 침수법에 의하여 부피를 측정하고 밀도공식에 의하여 질량을 산출하였고, 평형측정판법에 의하여 무게중심을 구하였다. 연구결과 1. 인체계측항목에서 살펴보면 남자의 경우 둘레에서 체질별로 유의한 차이가 있었다. 2. 체적에서 살펴보면 남자의 경우 태음인과 소음인에서 유의한 차이가 있었고, 특히 두경부, 손, 발의 경우 태음인이 가장 작은 비율을 나타냈고 소음인이 가장 컸다. 3. 무게중심은 남자의 경우 소양인이 다른체질에 비하여 위에 있었다.

  • PDF

이단 평행봉 차오르기 동작의 운동학적 분석 (A Kinematic Analysis of Glide Kip Motion on the Uneven Bars)

  • 김승권;김성은;장대순
    • 한국운동역학회지
    • /
    • 제23권4호
    • /
    • pp.307-318
    • /
    • 2013
  • The purpose of this study was to analyze the kinematic variables of glide kip motion on the uneven bars through a two-dimensional cinematography. Three expert female gymnastics players were involved in the data gathering process. The followings were concluded according to the results. The arm, trunk and leg segments were fully extended throughout the kip movement. The whole body center of gravity showed the biggest changes during 66 to 87% of the kip motion. During the kip phase, the horizontal displacement of the leg was greater than the vertical displacement the leg. Glide kip motion should be done in orders of upward movement of leg, forward movement of leg, upward movement of trunk and forward movement of trunk segment. It was found that trunk segment and hip joint movements showed bigger changes than those of leg segment and shoulder joint in the glide kip motion. The largest angular velocity of hip joint was shown in the middle of the kip Phase. In conclusion, effective kip movement could be resulted when the trunk was displaced posterior-upward direction with fast hip joint extension after the leg segment was elevated upward and thrusted forward in advance.

A Technique of Segment Expression and RNA Interference (SERI) Reveals a Specific Physiological Function of a Cysteine-Rich Protein Gene Encoded in Cotesia plutellae Bracovirus

  • Barandoc, Karen;Kim, Yong-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권6호
    • /
    • pp.610-615
    • /
    • 2009
  • As a provirus, polydnavirus has a segmented DNA genome on chromosome(s) of host wasp. It contains several genes in each segment that presumably play critical roles in regulating physiological processes of target insect parasitized by the wasp. A cysteine-rich protein 1 (CRP1) is present in the polydnavirus Cotesia plutellae bracovirus (CpBV) genome, but its expression and physiological function in Plutella xylostella parasitized by the viral host C. plutellae is not known. This CpBV-CRP1 encoding 189 amino acids with a putative signal peptide (20 residues) was persistently expressed in parasitized P. xylostella with gradual decrease at the late parasitization period. Expression of CpBV-CRP1 was tissue-specific in the fat body/epidermis and hemocyte, but not in the gut. Its physiological function was analyzed by inducing transient expression of a CpBV segment containing CpBV-CRP1 and its promoter, which caused significant reduction in hemocyte -spreading and delayed larval development. When the treated larvae were co-injected with double-stranded RNA of CpBV-CRP1, the expression of CpBV-CRP1 disappeared, whereas other genes encoded in the CpBV segment was expressed. These co-injected larvae significantly recovered the hemocyte-spreading capacity and larval development rate. This study reports that CpBV-CRP1 is expressed in P. xylostella parasitized by C. plutellae and its physiological function is to alter the host immune and developmental processes.

중등학생 골프선수의 퍼팅 스트로크 동작에 대한 운동학적 분석 (Kinematic Analysis of Secondary School Golf Player's Putting Stroke Motion)

  • 고재연;오정환
    • 한국운동역학회지
    • /
    • 제20권4호
    • /
    • pp.447-455
    • /
    • 2010
  • The objective of this study was to analyze the difference in kinematic variables for successful and unsuccessful golf putting strokes. The study population included 8 male secondary school golf players who had played golf for over 3 years and whose handicap was 4 or lower. A hole was made on a 5-m-long artificial flat mat for practice, and an environment similar to that of a real green was created. The participants' motions were analyzed through 3D image analysis, and the difference in kinematic variables for successful and unsuccessful putting strokes in the same direction was determined. Data analysis revealed the following findings: The time spent for a segment of putting was the greatest for the backswing segment for both successful and unsuccessful strokes. During address and impact, the both changed to a larger extent. For successful putting strokes, the change in the elbow angle during the downswing was greater for the right elbow than for the left elbow. For both successful and unsuccessful putting strokes, the left shoulder angle increased during the segment from address to the turning point and decreased during the segment from the turning point to impact. In contrast, the right shoulder angle significantly differed between successful and unsuccessful putting strokes only during address. During successful and unsuccessful motions, the swing was executed with the moving displacement of the X-axis of the club head maintained almost constant along a straight light without back and forth movement. In the backswing segment, moving displacement of the Y- and Z-axes was greater in successful strokes than in unsuccessful strokes; however, this difference was very small for the Y-axis. The velocity of the club head for successful and unsuccessful motions significantly differed during address and at the turning point. The highest velocity of the ball was greater for successful than for unsuccessful putting strokes.

볼링 투구동작의 운동역학적 연구 (Biomechanical Analysis of a Bowling Swing)

  • 이해명;이성철;이해동
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.53-63
    • /
    • 2006
  • The general objective of this study was to investigate biomechanical characteristics of bowling swing using three-dimensional cinematography. This study focused specifically on movements of the upper body segments during a bowling swing. Eight elite female bowling players participated in this study. Subjects performed bowling swing and their performance was sampled at 60 frame/sec using two high-speed video cameras with a synchronizer. After digitizing images from two cameras, the two-dimensional coordinates were used to produce three-dimensional coordinates of the 12 body segments (20 joint reference makers). The obtained three-dimensional coordinates were fed to a custom-written kinematic and kinetic analyses program (LabView 6.1, National Instrument, Austin, TX, USA). The analyses determined the linear and angular kinematic variables of the body segments with which joint force and torque of the lower and upper trunks and the shoulder were estimated based on the Newton-Euler equations. It was found that during the bowling swing the peak linear velocities of the body segments were reached in sequence the trunk, the shoulder, the elbow, the wrist, and the bowl. This result indicates that linear momentum of the lower body and the trunk transmits to the arm segment during the bowling swing. The joint torques of the torso and the arm occurred almost simultaneously, indicating that bowling swing seem to be a push-like motion, rather than a proximal-distal sequence motion in which many of throwing motions are categorized. The ultimate objective of the bowling swing is to release a heavy-weight bowl with power and consistency. Therefore, the bowling swing observed in this study well agrees with that bowlers use the stepping to increase the linear velocity of the bowl, the simple pendulum system and the push-like segmental motion in the torso and the arm segment to enhance the power at the release of the bowl.