• 제목/요약/키워드: Body scheme

Search Result 501, Processing Time 0.026 seconds

A Biomechanical Model of Lower Extremity Movement in Seated Foot Operation

  • Kyu-Sung Hwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.60
    • /
    • pp.37-46
    • /
    • 2000
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. The model incorporated four rigid body segments with the twenty-four muscles to represent lower extremity This study deals with quasi-static movement to investigate dynamic movement effect in seated foot operation. It is found that optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles and antagonistic muscles reasonably. So, the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles and the antagonistic muscle effects from the stabilization of the joint. For the model validation, three male subjects performed the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. For the selection of optimal seated posture, a physiological meaningful criterion was developed for muscular load sharing developed. For exertion levels, the transition point of type F motor unit of each muscle is inferred by analyzing the electromyogram at the seated postures. Also, for predetermined seated foot operations exertion levels, the recruitment pattern is identified in the continuous exertion, by analyzing the electromyogram changes due to the accumulated muscle fatigue.

  • PDF

An Observation of Unified Force Expression in The Cylindrical Magnetic Material with a Vertical Current Running Through Its Center (전류가 관통하는 원통형 자성체에 미치는 전자기력식의 통일성에 대한 고찰)

  • Choi, Hong-Soon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.174-179
    • /
    • 2011
  • Magnetic force calculation methods such as Maxwell stress, virtual work principle, equivalent magnetic charge, and equivalent magnetizing current are widely used until now. The force density is still controversial issue even though it is common sense that all of these methods have legitimate results. The surface force densities of each method are quite different with each other in the point of numerical result and final expression. In this paper, it is shown that a unified expression of body force density is derived using virtual air-gap scheme for an analytic model in which cylindrical magnetic material with a vertical current runs through its center.

Multimodal Image Fusion with Human Pose for Illumination-Robust Detection of Human Abnormal Behaviors (조명을 위한 인간 자세와 다중 모드 이미지 융합 - 인간의 이상 행동에 대한 강력한 탐지)

  • Cuong H. Tran;Seong G. Kong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.637-640
    • /
    • 2023
  • This paper presents multimodal image fusion with human pose for detecting abnormal human behaviors in low illumination conditions. Detecting human behaviors in low illumination conditions is challenging due to its limited visibility of the objects of interest in the scene. Multimodal image fusion simultaneously combines visual information in the visible spectrum and thermal radiation information in the long-wave infrared spectrum. We propose an abnormal event detection scheme based on the multimodal fused image and the human poses using the keypoints to characterize the action of the human body. Our method assumes that human behaviors are well correlated to body keypoints such as shoulders, elbows, wrists, hips. In detail, we extracted the human keypoint coordinates from human targets in multimodal fused videos. The coordinate values are used as inputs to train a multilayer perceptron network to classify human behaviors as normal or abnormal. Our experiment demonstrates a significant result on multimodal imaging dataset. The proposed model can capture the complex distribution pattern for both normal and abnormal behaviors.

Prospective validation of a novel dosing scheme for intravenous busulfan in adult patients undergoing hematopoietic stem cell transplantation

  • Cho, Sang-Heon;Lee, Jung-Hee;Lim, Hyeong-Seok;Lee, Kyoo-Hyung;Kim, Dae-Young;Choe, Sangmin;Bae, Kyun-Seop;Lee, Je-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • The objective of this study was to externally validate a new dosing scheme for busulfan. Thirty-seven adult patients who received busulfan as conditioning therapy for hematopoietic stem cell transplantation (HCT) participated in this prospective study. Patients were randomized to receive intravenous busulfan, either as the conventional dosage (3.2 mg/kg daily) or according to the new dosing scheme based on their actual body weight (ABW) ($23{\times}ABW^{0.5}mg\;daily$) targeting an area under the concentration-time curve (AUC) of $5924{\mu}M{\cdot}min$. Pharmacokinetic profiles were collected using a limited sampling strategy by randomly selecting 2 time points at 3.5, 5, 6, 7 or 22 hours after starting busulfan administration. Using an established population pharmacokinetic model with NONMEM software, busulfan concentrations at the available blood sampling times were predicted from dosage history and demographic data. The predicted and measured concentrations were compared by a visual predictive check (VPC). Maximum a posteriori Bayesian estimators were estimated to calculate the predicted AUC ($AUC_{PRED}$). The accuracy and precision of the $AUC_{PRED}$ values were assessed by calculating the mean prediction error (MPE) and root mean squared prediction error (RMSE), and compared with the target AUC of $5924{\mu}M{\cdot}min$. VPC showed that most data fell within the 95% prediction interval. MPE and RMSE of $AUC_{PRED}$ were -5.8% and 20.6%, respectively, in the conventional dosing group and -2.1% and 14.0%, respectively, in the new dosing scheme group. These findings demonstrated the validity of a new dosing scheme for daily intravenous busulfan used as conditioning therapy for HCT.

Comparison and Optimization of Parallel-Transmission RF Coil Elements for 3.0 T Body MRI (3.0 T MRI를 위한 병렬전송 고주파 코일 구조 비교와 최적화)

  • Oh, Chang-Hyun;Lee, Heung-K.;Ryu, Yeun-Chul;Hyun, Jung-Ho;Choi, Hyuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.55-60
    • /
    • 2007
  • In high field (> 3 T) MR imaging, the magnetic field inhomogeneity in the target object increases due to the nonuniform electro-magnetic characteristics of the relatively high RF frequency. Especially in the body imaging, the effect causes more serious problems resulting in locally high SAR(Specific Absorption Ratio). In this paper, we propose an optimized parallel-transmission RF coil and show the utility of the coil by FDTD simulations to overcome the unwanted effects. Three types of TX coil elements are tested to maximize the efficiency and their driving patterns(amplitude and phase) optimized to have adequate field homogeneity, proper SAR level, and sufficient field strength. For the proposed coil element of $25cm{\times}8cm$ loop structure with 12 channels for a 3.0 T body coil, the field non-uniformity of more than 70% without optimization was reduced to about 26 % after the optimization of driving patterns. The experimental as well as simulation results show that the proposed parallel driving scheme is clinically useful for (ultra) high field MRI.

Deep Learning-Based Motion Reconstruction Using Tracker Sensors (트래커를 활용한 딥러닝 기반 실시간 전신 동작 복원 )

  • Hyunseok Kim;Kyungwon Kang;Gangrae Park;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.11-20
    • /
    • 2023
  • In this paper, we propose a novel deep learning-based motion reconstruction approach that facilitates the generation of full-body motions, including finger motions, while also enabling the online adjustment of motion generation delays. The proposed method combines the Vive Tracker with a deep learning method to achieve more accurate motion reconstruction while effectively mitigating foot skating issues through the use of an Inverse Kinematics (IK) solver. The proposed method utilizes a trained AutoEncoder to reconstruct character body motions using tracker data in real-time while offering the flexibility to adjust motion generation delays as needed. To generate hand motions suitable for the reconstructed body motion, we employ a Fully Connected Network (FCN). By combining the reconstructed body motion from the AutoEncoder with the hand motions generated by the FCN, we can generate full-body motions of characters that include hand movements. In order to alleviate foot skating issues in motions generated by deep learning-based methods, we use an IK solver. By setting the trackers located near the character's feet as end-effectors for the IK solver, our method precisely controls and corrects the character's foot movements, thereby enhancing the overall accuracy of the generated motions. Through experiments, we validate the accuracy of motion generation in the proposed deep learning-based motion reconstruction scheme, as well as the ability to adjust latency based on user input. Additionally, we assess the correction performance by comparing motions with the IK solver applied to those without it, focusing particularly on how it addresses the foot skating issue in the generated full-body motions.

A Design of Bandpass Filter for Body Composition Analyzer (체성분 측정기용 대역통과 필터 설계)

  • Bae, Sung-Hoon;Cho, Sang-Ik;Lim, Shin-Il;Moon, Byoung-Sam
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.43-50
    • /
    • 2005
  • This paper describes some IC(integrated circuits) design and implementation techniques of low power multi-band Gm-C bandpass filter for body composition analyzer. Proposed BPF(bandpass filter) can be selected from three bands(20 KHz, 50 KHz, 100 KHz) by control signal. To minimize die area, a simple center frequency tuning scheme is used. And to reduce power consumption, operational transconductance amplifier operated in the sub-threshold region is adopted. The proposed BPF is implemented with 0.35 um 2-poly 3-metal standard CMOS technology Chip area is $626.42um\;{\times}\;475.8um$ and power consumption is 700 nW@100 KHz.

Performance Evaluation of Two-Equation Turbulence Models for 3D Wing-Body Configuration

  • Kwak, Ein-Keun;Lee, Nam-Hun;Lee, Seung-Soo;Park, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.307-316
    • /
    • 2012
  • Numerical simulations of 3D aircraft configurations are performed in order to understand the effects of turbulence models on the prediction of aircraft's aerodynamic characteristics. An in-house CFD code that solves 3D RANS equations and two-equation turbulence model equations are used. The code applies Roe's approximated Riemann solver and an AF-ADI scheme. Van Leer's MUSCL extrapolation with van Albada's limiter is also adopted. Various versions of Menter's $k-{\omega}$ SST turbulence models as well as Coakley's $q-{\omega}$ model are incorporated into the CFD code. Menter's $k-{\omega}$ SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared with computational results from the $3^{rd}$ AIAA CFD Drag Prediction Workshop. Numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared with computational results of the $2^{nd}$ AIAA CFD Drag Prediction Workshop. Aerodynamic characteristics as well as flow features are scrutinized with respect to the turbulence models. The results obtained from each simulation incorporating Menter's $k-{\omega}$ SST turbulence model variations are compared with one another.

The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant (해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향)

  • Lee, Seung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.

An in vitro comparison between two different designs of sagittal split ramus osteotomy

  • Andrade, Valdir Cabral;Luthi, Leonardo Flores;Sato, Fabio Loureiro;Pozzer, Leandro;Olate, Sergio;Albergaria-Barbosa, Jose Ricardo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.3
    • /
    • pp.133-138
    • /
    • 2015
  • Objectives: To evaluate the influence of the type of osteotomy in the inferior aspect of the mandible on the mechanical performance. Materials and Methods: The study was performed on 20 polyurethane hemimandibles. A sagittal split ramus osteotomy (SSRO) was designed in 10 hemimandibles (group 1) with a vertical osteotomy in the buccal side (second molar level) and final osteotomy was performed horizontally on the lingual aspect, while the mandible body osteotomy was finalized as a straight osteotomy in the basilar area, perpendicular to the body. For group 2, the same osteotomy technique was used, but an oblique osteotomy was done in the basilar aspect of the mandibular body, forming continuity with the sagittal cut in the basilar area. Using a surgical guide, osteosynthesis was performed with bicortical screws using an inverted L scheme. In both groups vertical compression tests were performed with a linear load of 1 mm/min on the central fossa of the first molar and tests were done with models made from photoelastic resin. Data were analyzed using Student's t-test, establishing a statistical significance when P<0.05. Results: A statistical difference was not observed in the maximum displacements obtained in the two osteotomies (P<0.05). In the extensiometric analysis, statistically significant differences were identified only in the middle screw of the fixation. The photoelastic resin models showed force dissipation towards the inferior aspect of the mandible in both SSRO models. Conclusion: We found that osteotomy of the inferior aspect did not influence the mechanical performance for osteosynthesis with an inverted L system.