• Title/Summary/Keyword: Body panel

Search Result 406, Processing Time 0.025 seconds

FE Analysis for Application of Isotropic Steel Sheet on Auto-Roof Panel (등방성 강판의 자동차용 Roof Panel 부품 적용 특성 해석)

  • Han S.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.241-246
    • /
    • 2006
  • The isotropic steel sheet was developed and started to apply on the auto-body outer panel, however the characteristics of application on auto-body were not well known. In this paper the FE analysis of outer panel of auto-body was carried out to investigate the characteristics of isotropic steel sheet. For the FE analysis of the roof panel of ULSAB body the isotropic steel sheet and the bake hardening steel sheet were used. The Isotropic steel sheet shows more deformation at punch bottom area of roof panel than the bake hardening steel sheet that is most required forming properties far outer panel to obtain the shape likability of forming parts. It is shown that the isotropic steel sheet has suitable material properties far outer panels of auto-body.

Characteristics of Composite Body Panel (복합재료 Body Panel의 특성평가)

  • Nam, Hyun-Wook;Pyun, Hyun-Joong;Lee, Young-Tae;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.109-114
    • /
    • 2000
  • A research fur development of composite body panel is in progress for lightening tare. In this study, experiments on estimation of mechanical properties of LPMC (Low pressure molding compound) including fatigue and impact characteristics were carried out. The experiments show that LPMC satisfied basic requirements of car body panel. The fatigue life of LPMC was predicted and the material degradation due to fatigue and impact were fined out.

  • PDF

Study of Forming Analyzing Auto-body panel by Using One-step Finite Element Method (One-Step 유한요소법을 이용한 차체판넬 성형해석에 관한 연구)

  • Jung, D.W.;Lee, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.261-264
    • /
    • 2006
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

A Study of Auto-body Panel Correction of Forming Analysis that Use Dynamic-extensive Finite Element Method (동적-외연적 유한요소법을 이용한 차체 판넬 성형해석에 관한 연구)

  • Jung Dong Won;Hwang Jae Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.115-126
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Analyzed auto-body panel stomping process correction of forming using software called Dynaform using dynamic extensive method. Further, the simulated results for the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

Numerical Evaluation of 2nd Derivatives of the Potential in the Panel method for the Unsteady Potential Flow Problem (비정상 포텐셜 유동의 패널법 해석에서 포텐셜의 2차 미분값의 수치계산)

  • 양진호;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.41-45
    • /
    • 2000
  • In solving the unsteady potential flow problem of the ship in waves with the panel method, in general one can consider the basic flow as the free stream or double body solution. For the double body solution, the body boundary condition has the 2nd derivatives of the velocity potential. Low order panel methods are known to suffer from the significant error in the 2nd derivatives computed at the body surface. This paper analyzes the numerical error in the 2nd derivatives for a 2-D cylinder and a 3-D sphere problem, and an extrapolation method to obtain the correct derivatives on the body surface is suggested.

  • PDF

The sectional analysis of auto-body panel stamping process and three-dimensional shape composition (차체판넬 스템핑공정의 단면해석과 3차원 형상합성)

  • Jung, Dong-Won;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.101-107
    • /
    • 1997
  • A sectional analysis of auto-body panel stamping is carried out by using the rigid-plastic FEM based on the membrane theory. The auto-body panel material is assumed to possess normal anisotropy and to obey Hill's new yield criterion and its associated flow rule. A method of contact treatment is proposed in which the skew boundary condition for arbitarily shaped tools is successively used during iteration. Deformation of each section of trunk-lid panel is simulated and composed to get the three-dimensional shape by using CAD technique. It was shown that the composition of the two-dimensional section analysis gives almost the same results as the full three-dimensional analysis.

  • PDF

A Study of Forming Analysis by using Dynamic-Explicit Finite Element Method in Auto-Body Stamping (차체 판넬 스템핑 공정에서 동적-외연적 유한요소법을 이용한 성형해석에 관한 연구)

  • Jung, Dong-Won;Hwang, Jae-Sin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.63-72
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the stamping industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

Dynamic Explicit Elastic-Plastic Finite Element Analysis of Large Auto-body Panel Stamping Process (대형 차체판넬 스템핑공정에서의 동적 외연적 탄소성 유한요소해석)

  • 정동원;김귀식;양동열
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.10-22
    • /
    • 1998
  • In the present work the elastic-plastic FE formulations using dynamic explicit time integration schemes are used for numerical analysis of a large auto-body panel stamping processes. For analyses of more complex cases with larger and more refined meshes, the explicit method is more time effective than implicit method, and has no convergency problem and has the robust nature of contact and friction algorithms while implicit method is widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and rigorous while the rigid-plastic scheme require small computation time. In finite element simulation of auto-body panel stamping processes, the roobustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry conditions. The performnce of the dynamic explicit algorithms are investigated by comparing the simulation results of formaing of complicate shaped autobody parts, such as a fuel tank and a rear hinge, with the experimental results. It has been shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective computation for complicated auto-body panel stamping processes.

  • PDF

Study of Forming Analysis Auto-body Panel Using One-step Theory (One-Step 이론을 이용한 차체판넬 성형 해석에 관한 연구)

  • Ahn H.G.;KO H.H.;Lee C.H.;Ahn B.I.;Moon W.S.;Jung D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.585-588
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented, in this paper The one-step approach using a finite element inverse method will be introduced to predict the optimal forming with changing of blank pressure the developed program is applied to auto-body panel forming.

  • PDF

Calculation of Wave Resistance for a Submerged Body by a Higher Order Panel Method (고차 판요소법을 이용한 몰수체의 조파저항 계산)

  • Chang-Gu Kang;Se-Eun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.58-65
    • /
    • 1992
  • In this paper, wave resistance for a submerged body is calculated by a higher order panel method. The Neumann-Kelvin problem is solved by the source or normal dipole distribution method. The body surface is represented by a bicubic B-spline and the singularity strengths are approximated by a bilinear form. The results calculated by the higher order panel method are compared with those by the lowest order panel method developed by Hess & Smith. The convergence rate of the higher order panel method is much better than the lowest order panel method. But the wave resistance calculated by the higher order panel method still shows discrepancy with an analytic solution at low Froude number like that by the lowest order panel method.

  • PDF