• Title/Summary/Keyword: Body motion

Search Result 2,108, Processing Time 0.028 seconds

A Study on Response Functions of Manoeuvring Motion of a Ship in Regular Waves (규칙파에 대한 조종운동의 응답함수에 관한 고찰)

  • 손경호;이경우;김진형
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.11-21
    • /
    • 1994
  • Final aim of this paper is a study on simulation of automatic steering of a ship in random seas. In order to achieve this aim, we need excitation due to random seas. The excitation may be estimated from energy spectrum of irregular waves and response functions of manoeuvring motion of a ship in regular waves. This paper deals with response functions of manoeuvring motion of a ship in regular waves. We discussed New Strip Method(NSM) of sway-yaw-roll coupled motions in regular waves. NSM is defined in space axes system and that has been used to predict seakeeping performance of a ship in waves. But ship manoeuvring is defined in body fixed axes system. So we cannot use NSM theory itself in predicting manoeuvring performance of a ship in waves. We introduced relationship between space axes system and body fixed axes system. And we developed modified NSM which was defined in body fixed axes system and was able to be used in manoeuvring motion of a ship in waves. We calculated sway and yaw response functions of manoeuvring motion of a bulk carrier in regular waves.

  • PDF

A method of formulating the equations of motion of multibody systems (다몸체 시스템의 운동방정식 형성방법)

  • 노태수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.926-930
    • /
    • 1993
  • An efficient method of formulating the equations of motion of multibody systems is presented. The equations of motion for each body are formulated by using Newton-Eulerian approach in their generic form. And then a transformation matrix which relates the global coordinates and relative coordinates is introduced to rewrite the equations of motion in terms of relative coordinates. When appropriate set of kinematic constraints equations in terms of relative coordinates is provided, the resulting differential and algebraic equations are obtained in a suitable form for computer implementation. The system geometry or topology is effectively described by using the path matrix and reference body operator.

  • PDF

Power Assist Control for Walking Aid by HAL Based on Phase Sequence and EMG

  • Lee, Suwoong;Yoshiyuki Sankai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.46.1-46
    • /
    • 2001
  • This paper describes a control method of hybrid power assistive system for lower body, HAL, with the techniques of Phase Sequence and the application of EMG. Our objective is to attain the power assist control of motion in the lower body effectively with these two methods. The Phase Sequence which performs basic motion controls of HAL is the method that a motion, the Task, is accomplished by dividing each motion into the unit named Phase and ...

  • PDF

Implementation of A 3-D Animation System Based on The MPEG-4 SNHC Standard (MPEG-4 SNHC 표준을 따르는 3차원 애니메이션 시스템의 구현)

  • 윤승욱;안정환;전정희;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.129-132
    • /
    • 2002
  • In this paper, we propose a 3-D animation system to track and analyze motion of the human object. The proposed system consists of two separate layers: motion analysis layer and 3-D model registration layer. Following the MPEG-4 SNHC standard, we generate object motion using body definition and animation parameters. In the implemented system, we acquire human motion data from a single camera and extract body definition parameters from arbitrary VRML human models.

  • PDF

Deep Learning-Based Motion Reconstruction Using Tracker Sensors (트래커를 활용한 딥러닝 기반 실시간 전신 동작 복원 )

  • Hyunseok Kim;Kyungwon Kang;Gangrae Park;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.11-20
    • /
    • 2023
  • In this paper, we propose a novel deep learning-based motion reconstruction approach that facilitates the generation of full-body motions, including finger motions, while also enabling the online adjustment of motion generation delays. The proposed method combines the Vive Tracker with a deep learning method to achieve more accurate motion reconstruction while effectively mitigating foot skating issues through the use of an Inverse Kinematics (IK) solver. The proposed method utilizes a trained AutoEncoder to reconstruct character body motions using tracker data in real-time while offering the flexibility to adjust motion generation delays as needed. To generate hand motions suitable for the reconstructed body motion, we employ a Fully Connected Network (FCN). By combining the reconstructed body motion from the AutoEncoder with the hand motions generated by the FCN, we can generate full-body motions of characters that include hand movements. In order to alleviate foot skating issues in motions generated by deep learning-based methods, we use an IK solver. By setting the trackers located near the character's feet as end-effectors for the IK solver, our method precisely controls and corrects the character's foot movements, thereby enhancing the overall accuracy of the generated motions. Through experiments, we validate the accuracy of motion generation in the proposed deep learning-based motion reconstruction scheme, as well as the ability to adjust latency based on user input. Additionally, we assess the correction performance by comparing motions with the IK solver applied to those without it, focusing particularly on how it addresses the foot skating issue in the generated full-body motions.

Method for Increasing Stability by Reducing the Motion of a Lightweight Floating Body (경량 부유체의 운동 저감으로 안정성 증가방법에 관한 연구)

  • Seon-Tae Kim;Jea-Yong Ko;Yu-mi Han
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.407-416
    • /
    • 2023
  • Demand for leisure facilities such as mooring facilities for berthing leisure vessels and floating pensions based on floating bodies is increasing owing to the rapid growth of the population and related industries for marine leisure activities. Owing to its relatively light weight as a fluid, inclination is easily generated by waves and surcharges flowing to the coast, resulting in frequent safety accidents because of the low stability. As a solution to this problem, a motion reduction device for floating bodies is proposed in this study. The device (motion reduction device based on the air pressure dif erence) was attached to a floating body and the effect was analyzed by comparing the results with those of a floating body without motion reduction. The effect analysis was further analyzed using a computer analysis test, and the method for increasing the stability of the floating body was studied, and its the effect was verified. Based on the analysis of the test results, the stability of the floating body increased with a motion damping device is higher than that of the floating body without a motion reducing device as the wave momentum reduces, owing to the air pressure difference. Therefore it was concluded that the use of such a device for reducing motion a floating body is useful not only for non-powered ships but also for powered and semi-submersible ships, and further research should be conducted by applying it to various fields.

Motion Adaptation Control of 3-D Human Character (3차원 캐릭터의 동작적응 제어 기법)

  • 김상수;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.383-383
    • /
    • 2000
  • In this paper, a motion adaptation control is applied for animation of 3-D human character. The method includes parameterization of joint motion data, motion adaptation based on body ratio of character, dynamic adaptation using genetic algorithm, etc. The feasibility of motion adaptation technique is verified by applying to motion control and adaptation of a 3-D human character.

  • PDF

Distribution of Clothing Pressure under the Brassiere (브래지어 착용시 흥부에서의 의복압 분포)

  • 이미진;김양원
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.2
    • /
    • pp.178-185
    • /
    • 2002
  • The purpose of this study was to measure distribution of clothing pressure on breast in brassiere according to body shape and motion, and the position of hook-and-eye on brassiere, and to get basic data for comfortable brassiere design. Clothing pressure was measured from 8 female subjects under wearing trials in climatic chamber. When brassiere was tied together with inner or outer hook-and-eye, clothing pressure under the condition were 10.2 and 9.6 gf/cm², respectively. With the degree between main body and arms increased from 0° to 45° and 90°to the front, clothing pressure decreased from 10.2 to 9.6 gf/cm², and then increased to 10.4 gf/cm² When the decree was increased from 45° to 70° to the flank, the pressure increased from 9.3 to 10.6 gf/cm². Fat body shape recorded 10.8 gf/cm², and lean body shape recorded 9.5 gf/cm² of clothing pressure by wearing brassiere. Clothing pressures of brassiere were 7.8g gf/cm² in front, 9.5 gf/cm² in side, 12.8 gf/cm² in the back side. Therefore, clothing pressure of brassiere was influenced to the greater extent by body shape and measuring points on human body than by the position of hook-and-eye and body motion.

  • PDF

Study on redundancy resolution algorithm of humanoid

  • Yoo, Dong-Su;So, Byung-Rok;Choi, Jae-Yeon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2759-2764
    • /
    • 2003
  • Humans usually employ more joints than they actually need, and thus they can be categorized as a kinematically redundant system. Therefore, the behavior of the human body can be analyzed by several redundancy resolution algorithms. Different from typical industrial robots that are fixed to the ground, the COG/ZMP condition should be taken into account in the human body motion in order not to fall down. Thus a COG/ZMP stability index is employed as a measure of stability. Kinematic redundancy inherent in the human body can be exploited to satisfy the COG/ZMP condition. Simulation result shows that the COG/ZMP condition can be satisfied by exploiting the null space motion of the kinematically redundant human body model.

  • PDF

Modeling of the Formation of Long Grooves in the Seabed by Grounded Ice Keels

  • Marchenko, Aleksey
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.1-15
    • /
    • 2003
  • The motion of passively floating body, whose keel can have a contact with seabed soil, is under the consideration. The body simulates ice ridge floating in shallow water. The force of seabed soil reaction applied to the grounded keel is estimated taking into account soil embankment near the grounded keel. Two-dimensional trajectories of body motion, the shape of the grooves in seabed and the height of soil embankment are calculated when the motion of the body is caused by semidiurnal $M_2$ tide. The influence of wave amplitude and bottom slope on the shapes of body trajectory and the grooves are analyzed.