• Title/Summary/Keyword: Body Scan

Search Result 569, Processing Time 0.025 seconds

Improvement of Cross Sectional Distance Measurement Method of 3D Human Body (3차원 인체 형상의 공극거리 측정 방법 효율성 향상을 위한 연구)

  • Kim, Min-Kyoung;Nam, Yun-Ja;Han, Hyun-Sook;Choi, Young-Lim
    • Fashion & Textile Research Journal
    • /
    • v.13 no.6
    • /
    • pp.966-971
    • /
    • 2011
  • This study is designed to develop programs that analyze the distance of clothes from human skin and cross-sectional body figures based on 3D human body scan data, and to verify accuracy and efficiency of the program so that it can be used for clothing fit evaluation and 3D human body research. The auto cross-sectional imaging program was developed by using Visual C++ and OpenGL, and the 3D human body scan data were adopted to measure the space between skin and clothing. The space measurements were obtained by two widely used programs, RapidForm and AutoCAD, and a program devised by the researchers of this study. Measuring time and space measurements from different programs were compared in order to verify accuracy and efficiency of the newly-devised program. As a result, no significant difference was found in the measurements. However, the required time to measure one cross section was different within the significance level of 0.05, and the differences become more remarkable as the number of measuring and the angle of space between skin and clothing increase. Therefore, the program developed by this study is expected to be useful for research on body shapes and fit evaluation based on 3D human body scan data in the fashion field.

The Correction Factor of Sensitivity in Gamma Camera - Based on Whole Body Bone Scan Image - (감마카메라의 Sensitivity 보정 Factor에 관한 연구 - 전신 뼈 영상을 중심으로 -)

  • Jung, Eun-Mi;Jung, Woo-Young;Ryu, Jae-Kwang;Kim, Dong-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.208-213
    • /
    • 2008
  • Purpose: Generally a whole body bone scan has been known as one of the most frequently executed exams in the nuclear medicine fields. Asan medical center, usually use various gamma camera systems - manufactured by PHILIPS (PRECEDENCE, BRIGHTVIEW), SIEMENS (ECAM, ECAM signature, ECAM plus, SYMBIA T2), GE (INFINIA) - to execute whole body scan. But, as we know, each camera's sensitivity is not same so it is hard to consistent diagnosis of patients. So our purpose is when we execute whole body bone scans, we exclude uncontrollable factors and try to correct controllable factors such as inherent sensitivity of gamma camera. In this study, we're going to measure each gamma camera's sensitivity and study about reasonable correction factors of whole body bone scan to follow up patient's condition using different gamma cameras. Materials and Methods: We used the $^{99m}Tc$ flood phantom, it recommend by IAEA recommendation based on general counts rate of a whole body scan and measured counts rates by the use of various gamma cameras - PRECEDENCE, BRIGHTVIEW, ECAM, ECAM signature, ECAM plus, IFINIA - in Asan medical center nuclear medicine department. For measuring sensitivity, all gamma camera equipped LEHR collimator (Low Energy High Resolution multi parallel Collimator) and the $^{99m}Tc$ gamma spectrum was adjusted around 15% window level, the photo peak was set to 140-kev and acquirded for 60 sec and 120 sec in all gamma cameras. In order to verify whether can apply calculated correction factors to whole body bone scan or not, we actually conducted the whole body bone scan to 27 patients and we compared it analyzed that results. Results: After experimenting using $^{99m}Tc$ flood phantom, sensitivity of ECAM plus was highest and other sensitivity order of all gamma camera is ECAM signature, SYMBIA T2, ECAM, BRIGHTVIEW, IFINIA, PRECEDENCE. And yield sensitivity correction factor show each gamma camera's relative sensitivity ratio by yielded based on ECAM's sensitivity. (ECAM plus 1.07, ECAM signature 1.05, SYMBIA T2 1.03, ECAM 1.00, BRIGHTVIEW 0.90, INFINIA 0.83, PRECEDENCE 0.72) When analyzing the correction factor yielded by $^{99m}Tc$ experiment and another correction factor yielded by whole body bone scan, it shows statistically insignificant value (p<0.05) in whole body bone scan diagnosis. Conclusion: In diagnosing the bone metastasis of patients undergoing cancer, whole body bone scan has been conducted as follow up tests due to its good points (high sensitivity, non invasive, easily conducted). But as a follow up study, it's hard to perform whole body bone scan continuously using same gamma camera. If we use same gamma camera to patients, we have to consider effectiveness of equipment's change by time elapsed. So we expect that applying sensitivity correction factor to patients who tested whole body bone scan regularly will add consistence in diagnosis of patients.

  • PDF

3D Body Scan Data Analysis for the Slim-fit Dress Shirts Pattern Design -Focused on the 40s Male- (슬림 핏(Slim-fit) 드레스 셔츠 패턴 설계를 위한 3D Body Scan Data 활용에 관한 연구 -40대 남성을 중심으로-)

  • Shin, Kyounghee;Suh, Chuyeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.1
    • /
    • pp.97-109
    • /
    • 2014
  • This study developed a functional dress shirt for adult males that reflected the body surface variation of a human body section by motion. This study conducted a 3D body scan for 8 subjects in their 40's based on the Size Korea 2010 database. Data recorded the proper posture change value and body surface change value to develop functional dress shirts for adult males. We scanned the subjects with a 3D body scanner for five primarily male wearing dress shirts and operating postures, right standing, arms raised to $90^{\circ}$ horizontal forward position, arms raised $90^{\circ}$ to the horizontal position side, lift up the arm $180^{\circ}$, and arm forward $90^{\circ}$ in a bent posture. We analyzed the 3D scan data from those motions to examine change of length using 3D software Rapidform XOS. The results indicated that the body surface sections with contraction were the front and rear shoulder area, armpit and central length as well the width of arms at more than 10%. The increased body section included the body and armpit back length; in addition, the rear arm vibration girth and under arm girth were more than 10%. In order to reflect the size variation of for each motion, the ease amount of the front and rear shoulder length and width needs to be reduced 20% because it affects the shoulder length during the right standing. The results suggest that the ease amount of the shoulder length should be minimal. The ease amount of the back size needs to be 0.5-2cm bigger and set 0.5-1.5cm longer than the dress shirt length side drooping to compensate for the side length shortage of each motion. The sleeve length needs to be 0-0.5cm shorter, and ease amount of the girth of sleeve bottom needs to be reduced 0-0.7cm due to the size variation of arms. However, the girth of the rear arms is suggested to be 0-0.6cm longer in the ease amount to the rear arm girth as the extension is more than 10% over the width and length of each motion.

Dose Distribution and Image Quality in the Gantry Aperture for CT Examinations (전산화단층촬영 검사 시 Gantry Aperture 내의 선량분포와 영상의 질)

  • Cho, Pyong-Kon;Kim, You-Hyun;Choi, Jong-Hak;Lee, Ki-Yeol;Kim, Hyung-Cheol;Kim, Jang-Seob;Shin, Dong-Chul;Lee, Sung-Hyun;Lee, Jun-Hyub;Shin, Gwi-Soon
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.453-460
    • /
    • 2009
  • The purpose of this study was to determine the dose distribution and image quality according to slice thickness and BC(beam collimation) in the gantry aperture. CT scans were performed with a 64-slice MDCT(Brilliance 64, Philips, Cleveland, USA) scanner. To determine the dose distribution according to BC, a ionization chamber was placed at isocenter and 5, 10, 15, 20, 25 and 30 cm positions from the isocenter in the 12, 3, 6 and 9 o'clock directions. The dose distribution for phantom scan was also measured using CT head and body dose phantom with five holes at the center of the phantom and the positions of the 12, 3, 6 and 9 o'clock directions. The image noise measurement for different BCs was performed using an AAPM CT phantom. Water-filled block of the phantom was moved by 5 cm or 10 cm to the 12 o'clock direction, and the image noise was measured at the center of the phantom, and the points of 12, 3, 6 and 9 o'clock direction respectively. Some points were placed beyond the scan field of view (SFOV), so that measurement was not possible at that points. The results are as follows: The CTDIw showed a larger decrease as the source goes farther from the iso-center or the BC became wider. The CTDIw depends on the BC width more than the number of the channel of a detector array. The value of CTDIW decreased with increasing BC, but the value decreased 16.6~31.9% in the head phantom scan in air scan and 51.0~64.5% in the body phantom scan. The value of the noise was 3.9~5.9 in the head and 5.3~7.4 in the body except for BC of $2{\times}0.5\;mm$, regardless of the degree of deviation from the iso-center. When a subject was located within the SFOV, the position did not significantly affect image quality even if the subject was out of the center.

  • PDF

Development of Men Slacks Pattern Using 3D Scan Data (3차원 인체형상 스캔데이터를 이용한 남자 바지패턴 설계)

  • Sohn, Boo-Hyun
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.9
    • /
    • pp.137-146
    • /
    • 2008
  • This study was conducted in order to spread out lower body 3D scan data of men in their twenties. The aim was to achieve slacks pattern with ease allowance through comparison with existing flat patterns. For conversion of 3D scan data into 20 pattern, reference lines were established by using Rapid Foam in 3D shape analysis software. 2C-AN program and Yuka CAD were used to convert 20 pattern earned with straight posture of 3D scan data into slacks pattern by using Triangle Simplification & Runge-Kutta Method. In order to achieve this we needed to set a line 9cm below the hip line, to array vertex of each block to crease line while maintaining the horizontal line. And then we needed to set ease allowance in back crotch and to set waist circumference or hip circumference ease allowance in side seam of slacks. Results showed that long front crotch length can be achieved if 3D scan data is compared with 20 existing flat pattern. Slacks pattern that raise front crotch by about 1.5cm compared to back crotch and also possess ease allowance in back crotch area are great in appearance evaluation.

Development of a Side Scan Sonar System for Underwater Sun (천해용 Side Scan Sonar의 송수신 시스템 구현 및 운용에 관한 연구)

  • 오영석;이철원;강도욱;우종식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.222-227
    • /
    • 2000
  • "Side scan sonar" using acoustic signal has been developed to survey cable laying, sunken bodie\ulcorner bottom and so on. It use the acoustic signals, which are emitted from two transducer arrays, to get gemetri\ulcorner target area. This system consists of transceiver board, towed body, and deck unit. The transceiver board, w\ulcorner watertight canister of the towed body, controls the transmitting and receiving of 400kHz acoustic signals from \ulcorner After receiving the scattered signals, it processes the filtering, AGF(Automatic Gain Control), TVG(Time Heterodyne. The deck unit is composed of the signal processing part, A/D converter, power supplier, and real\ulcorner And the towed body has been designed to satisfy the optimal hydrodynamic behavior during towing. The de\ulcorner theory of transceiving part and some results from field-experiments will be introduced here.

  • PDF

A study on laser scan path generation for manufacturing 3-dimensional body using StereoLithography (StereoLithography로 3차원 형상가공을 위한 레이저 조사경로 생성에 관한 연구)

  • 안대건;김준안;이석희;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.687-692
    • /
    • 1993
  • This paper deals with the generation of laser scan path for manufacturing 3-dimensional body using StereoLithography. The purpose of this study is to develop one module of the StersoLithography system(SLA) for Rapid Protyping and Manufacturing. AutoCAD system is used to supply CAD information from model. The X-Y controller which was made for a special purpose is used to test this system. The system software developed is composed of 3 main modules, the first module is calculating the boundary point os laser scan path. The scound module is generating final output file which is used to down load on the controller. The result of this study shows a good algorithm to generate laser scan path on the basis of simple mathematical background.

  • PDF

Full mouth rehabilitation with fixed implant-supported prosthesis using temporary denture and double digital scanning technique: a case report (임시 의치와 이중 디지털 스캐닝 기법을 활용한 전악 고정성 임플란트 수복 증례)

  • Seok-Hyun Shin;Chan-Ik Park;Se-Ha Kang;Ji-Eun Moon;Min-Seok Oh;Chul-Min Park;Woo-Jin Jeon;Seong-Gu Han;Sun-Jae Kim;Su-Jin Choi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • When restoring with a dental digital system for implant-supported prosthesis, a double digital scanning technique is required: an intraoral scan of the three-dimensional implant location and intraoral scan after placement of temporary denture or provisional prosthesis. During the intraoral scan, the use of scan body as a stable landmark can improve the accuracy of digital impression and simplify laboratory process. In this case, a full-digital system was used to plan and fabricate a custom abutment, provisional prosthesis, and definitive prosthesis. After implant placement, the scan area of the intraoral scan body connected with implant and the intraoral scan body marked on the inside of temporary denture were superimposed. Out of the superimposed files, a custom abutment and provisional prosthesis were fabricated which match the vertical dimension of temporary denture, and definitive prosthesis was fabricated based on provisional prosthesis. We report this case because result has been functionally and esthetically satisfactory by using vertical dimension and central relation set during the fabrication of temporary denture to the definitive prosthesis.

2D Pattern Development of Tight-fitting Bodysuit from 3D Body Scan Data for Comfortable Pressure Sensation (인체의 3차원 스캔 데이터를 이용한 밀착 바디 슈트 개발)

  • Jeong, Yeon-Hee
    • Korean Journal of Human Ecology
    • /
    • v.15 no.3
    • /
    • pp.481-490
    • /
    • 2006
  • Adjusting pressure level in the construction of athletes' tight-fitting garments by reducing the elastic knit pattern is a challenging subject, which influences the performance of the wearer directly. Therefore, in this study, relationship between the reduction rates of the basic pattern obtained from 3D human scan data and resultant clothing pressure was explored to improve the fit and pressure exerted by clothing. 3D scan data were obtained using Cyberware and they were transformed into a flat pattern using software based on Runge-Kutta method. Reduction rate was examined by subjective wear test as well as objective pressure measurement. As a result, difference in the length between the original 3D body scan data and the 2D tight-fitting pattern was 0.02$\sim$0.50cm (0.05$\sim$1.06%), which was within the range of tolerable limits in making clothes. Among the five garments, the 3T-pattern was superior in terms of subjective sensation and fit. The pressure of the 3T pattern was 2$\sim$4 gf/cm2 at five locations on the body, which is almost the same or a bit higher than that of Z-pattern. In the case of tight-fitting overall garment, the reduction rate of the pattern in the wale direction is more critical to the subjective sensation than the course direction. It is recommended that the reduction grading rules of course direction should be larger than that of Ziegert for a better fit of tight-fitting garments. In the case of wale direction, however, reduction grading rule should be kept the same as suggested earlier by Ziegert (1988).

  • PDF

Measurement of Effective Half-life Using Dual Time I-131 Whole Body Scan in Patients with Differentiated Thyroid Cancer Treated by High Dose Therapy (고용량 방사성옥소 치료를 받은 갑상선분화암 환자에서 Dual Time I-131 Whole Body Scan을 이용한 유효반감기의 측정)

  • Yoon, Jae Sik;Lee, Jae Gon;Lee, Ki Hyun;Lim, Kwang Seok;Choi, Hak Ki;Lee, Sang Mi
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.98-103
    • /
    • 2014
  • Purpose: The effective half life of I-131 is useful to calculate radiation dose, period of hospitalization, and exposure dose of surrounding people from patient. However, it is difficult to measure. This study estimates the effective half life in whole body and thyroid in using of value of residual radioactivity obtained from the early and delay images of Dual time I-131 whole body scan. Also, the correlations between the effective half life and serum creatinine, GFR, and administration dose were investigated in this study. Materials and Methods: The targets were 50 patients administration high dose of I-131 from February to August in 2013, having normal range of serum creatinine and over $30{\mu}IU/mL$ of TSH levels. After administration radioactive I-131, the early scan in the 3rd day and the delay scan in the 5-6th days were performed. To measure the residual radioactivity in the whole body and thyroid, ROI was set and then background radioactivity was corrected to estimate. The effective half life was estimated by calculating the ratio of measured values between the early and delay images. To compare the effective half lives of the whole body and thyroid, it was analyzed by Independent t-test, and each correlation of the effective half life, GFR, serum creatinine, and the dose of administration were analyzed by calculating the pearson's correlation coefficient. All of the analysis were determined to be statistically significant when P<0.05. Results: The effective half life of the whole body was $17.06{\pm}5.50$ hours and of the thyroid was $17.22{\pm}5.41$ hours. The two effective half life did not show significant difference (P=0.887). As the value of GFR was increased, the effective half life of whole body (r=-0.407, P=0.003) and of thyroid (r=-0.473, P=0.001) were significantly decreased; as the value of serum creatinine was increased, the effective half life of whole body (r=0.309, P=0.029) and of thyroid (r=0.371, P=0.008) were significantly increased. In the administration dose, effective half life did not have correlations. Conclusion: The effective half life of I-131 of patients treated for their thyroids were estimated only by using the images of Dual time I-131 whole body scan. Also, the correlations with the effective life, GFR, and serum creatinine were examined. This study might be utilized for a study on optimization for the period of hospitalization of patients treated by high dose of I-131 and on evaluation for internal absorbed dose of MIRD schema in application of the effective half life.

  • PDF