• Title/Summary/Keyword: Body Resonance

Search Result 522, Processing Time 0.028 seconds

Diagnostic efficacy of specialized MRI & clinical results of arthroscopic treatment in ankle soft tissue impingement syndrome (족근 관절 연부조직 충돌 증후군에서 MRI의 진단적 의의 및 관절경적 치료 결과)

  • Lee, Jin-Woo;Moon, Eun-Su;Kim, Sung-Jae;Hahn, Soo-Bong;Kang, Eung-Shick
    • Journal of Korean Foot and Ankle Society
    • /
    • v.7 no.2
    • /
    • pp.208-217
    • /
    • 2003
  • Introduction: Soft-tissue impingement syndrome is now increasingly recognized as a significant cause of the chronic ankle pain. As a method to detect soft-tissue ankle impingement, a characteristic history and physical examination, routine MR imaging, and direct MR arthrography were used. The efficacy of routine MR imaging has been controversial for usefulness because of low sensitivity and specificity. Direct MR artrhography was recommaned for diagnosis because of the highest sensitivity, specificity and accuracy, but it requires an invasive procedure. The purpose of this study is to investigate the diagnostic accuracy of Fat suppressed, contrast enhanced, three-dimensional fast gradient recalled acquisition in the steady state with rediofrequency spoiling magnetic resonance imaging(CE 3D-FSPGR MRI) and to evaluate the clinical outcome of the arthroscopic treatment in assessing soft-tissue impingement associated with trauma of the ankle. Materials and Methods: We reviewed 38 patients who had arthroscopic evaluations and preoperative magnetic resonance imaging studies(3D-FSPGR MRI) for post-traumatic chronic ankle pain between January 2000 and August 2002. Among them, 24 patients had osteochondral lesion, lateral instability, loose body, malunion of lateral malleoli, and peroneal tendon dislocation. The patient group consisted of 23 men and 15 women with the average age of 34 years(16-81 years). The mean time interval from the initial trauma to the operation was 15.5 months(3 to 40 months), The mean follow-up duration of the assessment was 15.6months(12-48 months). MRI was simultaneously reviewed by two radiologists blinded to the clinical diagnosis. The sensitivity, specificity and accuracy of MRI was obtained from radiologic and arthroscopic finding. Arthroscopic debridement and additional operation for associated disease were performed. We used a standard protocol to evaluate patients before the operation and at follow-up which includes American Orthopedic Foot and Ankle Society Ankle-Hindfoot Score. Results: For the assessment of the synovitis and soft tissue impingement, fat suppressed CE 3D-FSPGR MR imaging had the sensitivity of 91.9%, the specificity of 84.4 and the accuracy of 87.5%. AOFAS Ankle-Hindfoot Score of preoperative state was 69.2, and the mean score of the last follow-up was 89.1. These were assessed as having 50% excellent(90-100) and 50% good(75-89). The presence of other associated disease didn't show the statistically significant difference(>0.05). Conclusion: Fat suppressed CE 3D-FSPGR MR imaging is useful method comparable to MR arthrography for diagnosis of synovitis or soft-tissue impingement, and arthroscopic debridement results in good clinical outcome.

  • PDF

Effects of Gradient Switching Noise on ECD Source Localization with the EEG Data Simultaneously Recorded with MRI (MRI와 동시에 측정한 뇌전도 신호로 전류원 국지화를 할 때 경사자계 유발 잡음의 영향 분석)

  • Lee H. R.;Han J. Y.;Cho M. H.;Im C. H.;Jung H. K.;Lee S. Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.108-115
    • /
    • 2003
  • Purpose : To evaluate the effect of the gradient switching noise on the ECD source localization with the EEG data recorded during the MRI scan. Materials and Methods : We have fabricated a spherical EEG phantom that emulates a human head on which multiple electrodes are attached. Inside the phantom, electric current dipole(ECD) sources are located to evaluate the source localization error. The EEG phantom was placed in the center of the whole-body 3.0 Tesla MRI magnet, and a sinusoidal current was fed to the ECD sources. With an MRI-compatible EEG measurement system, we recorded the multi channel electric potential signals during gradient echo single-shot EPI scans. To evaluate the effect of the gradient switching noise on the ECD source localization, we controlled the gradient noise level by changing the FOV of the EPI scan. With the measured potential signals, we have performed the ECD source localization. Results : The source localization error depends on the gradient switching noise level and the ECD source position. The gradient switching noise has much bigger negative effects on the source localization than the Gaussian noise. We have found that the ECD source localization works reasonably when the gradient switching noise power is smaller than $10\%$ of the EEG signal power. Conclusion : We think that the results of the present study can be used as a guideline to determine the degree of gradient switching noise suppression in EEG when the EEG data are to be used to enhance the performance of fMRI.

  • PDF

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.

Deep Learning-Based Assessment of Functional Liver Capacity Using Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI

  • Hyo Jung Park;Jee Seok Yoon;Seung Soo Lee;Heung-Il Suk;Bumwoo Park;Yu Sub Sung;Seung Baek Hong;Hwaseong Ryu
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.720-731
    • /
    • 2022
  • Objective: We aimed to develop and test a deep learning algorithm (DLA) for fully automated measurement of the volume and signal intensity (SI) of the liver and spleen using gadoxetic acid-enhanced hepatobiliary phase (HBP)-magnetic resonance imaging (MRI) and to evaluate the clinical utility of DLA-assisted assessment of functional liver capacity. Materials and Methods: The DLA was developed using HBP-MRI data from 1014 patients. Using an independent test dataset (110 internal and 90 external MRI data), the segmentation performance of the DLA was measured using the Dice similarity score (DSS), and the agreement between the DLA and the ground truth for the volume and SI measurements was assessed with a Bland-Altman 95% limit of agreement (LOA). In 276 separate patients (male:female, 191:85; mean age ± standard deviation, 40 ± 15 years) who underwent hepatic resection, we evaluated the correlations between various DLA-based MRI indices, including liver volume normalized by body surface area (LVBSA), liver-to-spleen SI ratio (LSSR), MRI parameter-adjusted LSSR (aLSSR), LSSR × LVBSA, and aLSSR × LVBSA, and the indocyanine green retention rate at 15 minutes (ICG-R15), and determined the diagnostic performance of the DLA-based MRI indices to detect ICG-R15 ≥ 20%. Results: In the test dataset, the mean DSS was 0.977 for liver segmentation and 0.946 for spleen segmentation. The Bland-Altman 95% LOAs were 0.08% ± 3.70% for the liver volume, 0.20% ± 7.89% for the spleen volume, -0.02% ± 1.28% for the liver SI, and -0.01% ± 1.70% for the spleen SI. Among DLA-based MRI indices, aLSSR × LVBSA showed the strongest correlation with ICG-R15 (r = -0.54, p < 0.001), with area under receiver operating characteristic curve of 0.932 (95% confidence interval, 0.895-0.959) to diagnose ICG-R15 ≥ 20%. Conclusion: Our DLA can accurately measure the volume and SI of the liver and spleen and may be useful for assessing functional liver capacity using gadoxetic acid-enhanced HBP-MRI.

Quantitative MRI Assessment of Pancreatic Steatosis Using Proton Density Fat Fraction in Pediatric Obesity

  • Jisoo Kim;Salman S. Albakheet;Kyunghwa Han;Haesung Yoon;Mi-Jung Lee;Hong Koh;Seung Kim;Junghwan Suh;Seok Joo Han;Kyong Ihn;Hyun Joo Shin
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1886-1893
    • /
    • 2021
  • Objective: To assess the feasibility of quantitatively assessing pancreatic steatosis using magnetic resonance imaging (MRI) and its correlation with obesity and metabolic risk factors in pediatric patients. Materials and Methods: Pediatric patients (≤ 18 years) who underwent liver fat quantification MRI between January 2016 and June 2019 were retrospectively included and divided into the obesity and control groups. Pancreatic proton density fat fraction (P-PDFF) was measured as the average value for three circular regions of interest (ROIs) drawn in the pancreatic head, body, and tail. Age, weight, laboratory results, and mean liver MRI values including liver PDFF (L-PDFF), stiffness on MR elastography, and T2* values were assessed for their correlation with P-PDFF using linear regression analysis. The associations between P-PDFF and metabolic risk factors, including obesity, hypertension, diabetes mellitus (DM), and dyslipidemia, were assessed using logistic regression analysis. Results: A total of 172 patients (male:female = 125:47; mean ± standard deviation [SD], 13.2 ± 3.1 years) were included. The mean P-PDFF was significantly higher in the obesity group than in the control group (mean ± SD, 4.2 ± 2.5% vs. 3.4 ± 2.4%; p = 0.037). L-PDFF and liver stiffness values showed no significant correlation with P-PDFF (p = 0.235 and p = 0.567, respectively). P-PDFF was significantly associated with obesity (odds ratio 1.146, 95% confidence interval 1.006-1.307, p = 0.041), but there was no significant association with hypertension, DM, and dyslipidemia. Conclusion: MRI can be used to quantitatively measure pancreatic steatosis in children. P-PDFF is significantly associated with obesity in pediatric patients.

Feasibility of Three-Dimensional Balanced Steady-State Free Precession Cine Magnetic Resonance Imaging Combined with an Image Denoising Technique to Evaluate Cardiac Function in Children with Repaired Tetralogy of Fallot

  • YaFeng Peng;XinYu Su;LiWei Hu;Qian Wang;RongZhen Ouyang;AiMin Sun;Chen Guo;XiaoFen Yao;Yong Zhang;LiJia Wang;YuMin Zhong
    • Korean Journal of Radiology
    • /
    • v.22 no.9
    • /
    • pp.1525-1536
    • /
    • 2021
  • Objective: To investigate the feasibility of cine three-dimensional (3D) balanced steady-state free precession (b-SSFP) imaging combined with a non-local means (NLM) algorithm for image denoising in evaluating cardiac function in children with repaired tetralogy of Fallot (rTOF). Materials and Methods: Thirty-five patients with rTOF (mean age, 12 years; range, 7-18 years) were enrolled to undergo cardiac cine image acquisition, including two-dimensional (2D) b-SSFP, 3D b-SSFP, and 3D b-SSFP combined with NLM. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) of the two ventricles were measured and indexed by body surface index. Acquisition time and image quality were recorded and compared among the three imaging sequences. Results: 3D b-SSFP with denoising vs. 2D b-SSFP had high correlation coefficients for EDV, ESV, SV, and EF of the left (0.959-0.991; p < 0.001) as well as right (0.755-0.965; p < 0.001) ventricular metrics. The image acquisition time ± standard deviation (SD) was 25.1 ± 2.4 seconds for 3D b-SSFP compared with 277.6 ± 0.7 seconds for 2D b-SSFP, indicating a significantly shorter time with the 3D than the 2D sequence (p < 0.001). Image quality score was better with 3D b-SSFP combined with denoising than with 3D b-SSFP (mean ± SD, 3.8 ± 0.6 vs. 3.5 ± 0.6; p = 0.005). Signal-to-noise ratios for blood and myocardium as well as contrast between blood and myocardium were higher for 3D b-SSFP combined with denoising than for 3D b-SSFP (p < 0.05 for all but septal myocardium). Conclusion: The 3D b-SSFP sequence can significantly reduce acquisition time compared to the 2D b-SSFP sequence for cine imaging in the evaluation of ventricular function in children with rTOF, and its quality can be further improved by combining it with an NLM denoising method.

Evaluation of Renal Pathophysiological Processes Induced by an Iodinated Contrast Agent in a Diabetic Rabbit Model Using Intravoxel Incoherent Motion and Blood Oxygenation Level-Dependent Magnetic Resonance Imaging

  • Yongfang Wang;Xin Zhang;Bin Wang;Yang Xie;Yi Wang;Xuan Jiang;Rongjia Wang;Ke Ren
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.830-843
    • /
    • 2019
  • Objective: To examine the potential of intravoxel incoherent motion (IVIM) and blood oxygen level-dependent (BOLD) magnetic resonance imaging for detecting renal changes after iodinated contrast-induced acute kidney injury (CI-AKI) development in a diabetic rabbit model. Materials and Methods: Sixty-two rabbits were randomized into 2 groups: diabetic rabbits with the contrast agent (DCA) and healthy rabbits with the contrast agent (NCA). In each group, 6 rabbits underwent IVIM and BOLD imaging at 1 hour, 1 day, 2 days, 3 days, and 4 days after an iohexol injection while 5 rabbits were selected to undergo blood and histological examinations at these specific time points. Iohexol was administrated at a dose of 2.5 g I/kg of body weight. Further, the apparent transverse relaxation rate (R2*), average pure molecular diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f) were calculated. Results: The D and f values of the renal cortex (CO) and outer medulla (OM) were significantly decreased compared to baseline values in the 2 groups 1 day after the iohexol injection (p < 0.05). A marked reduction in the D* values for both the CO and OM was also observed after 1 hour in each group (p < 0.05). In the OM, a persistent elevation of the R2* was detected for 4 days in the DCA group (p < 0.05). Histopathological changes were prominent, and the pathological features of CI-AKI aggravated in the DCA group until day 4. The D, f, and R2* values significantly correlated with the histological damage scores, hypoxia-inducible transcription factor-1α expression scores, and serum creatinine levels. Conclusion: A combination of IVIM and BOLD imaging may serve as a noninvasive method for detecting and monitoring CI-AKI in the early stages in the diabetic kidney.

Characterization of Hyaluronic Acid Membrane Cross-linked with Lactide (락타이드로 가교시킨 히아루론산 막의 특성)

  • Kwon, Ji-Young;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.599-604
    • /
    • 2005
  • The hyaluronic acid (HA) with excellent biocompatibility has been combined with lactide, the ester dimer of polylactide, with good biodegradability to produce biocompatible materials which can control the period of degradation in a human body. By freeze frying method, HA and lactide were crosslinked with crosslinking agent, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). Degree of lactide and EDC reaction was determined by the analysis of nuclear magnetic resonance spectroscopy. Both lactyl group and EDC conversion increased as the mole ratio of lactide to HA increased from 5 to 13. The membrane swelled less and became more brittle with the more addition of lactyl group resulting from the higher mole ratio of lactide to HA. Swelling ratio decreased and tensile modulus increased due to the more addition of lactyl group as the EDC concentration increased or reaction temperature decreased. Drug release experiment from various membranes with different degree of crosslinking showed that permeability decreased with increasing degree of crosslinking. The degradation became slower with the more addition of lactyl group. Mechanical property and degradation rate of the synthesized membrane were shown to be controlled through adjusting operation parameters such as mole ratio, temperature, and crosslinking agent concentration.

Virtual Angioscopy for Diagnosis of Carotid Artery Stenosis (경동맥 협착증 진단을 위한 가상혈관경)

  • 김도연;박종원
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.821-828
    • /
    • 2003
  • The virtual angioscopy was implemented using MR angiography image of carotid artery Inside of the carotid artery is one of the body region not accessible by real optical endoscopy but can be visualized with virtual endoscopy. In order to determine the navigation path, we segmented the common carotid artery and internal carotid artery from the MR angiography image. We used the coordinates as a navigation path for virtual camera that were calculated from medial axis transformation. We used the perspective projection and marching cube algorithm to render the surface from volumetric MRA image data. A stroke occurs when brain cells die because of decreased blood flow to the brain. The carotid artery is the primary blood vessel that supplies the blood flow to the brain. Therefore, the carotid artery stenosis is the primary reason of stroke. The virtual angioscopy is highly recommended as a diagnosis tool with which the specific Place of stenosis can be identified and the degree of stenosis can be measured qualitatively. Also, the virtual angioscopy can be used as an education and training tool for endoscopist and radiologist.

Fungal Osteomyelitis of Temporomandibular Joint and Skull Base Caused by Chronic Otitis Media

  • Kim, Bok Eum;Park, Keun Jeong;Lee, Jung Eun;Park, YounJung;Kwon, Jeong-Seung;Kim, Seong-Taek;Choi, Jong-Hoon;Ahn, Hyung-Joon
    • Journal of Oral Medicine and Pain
    • /
    • v.45 no.1
    • /
    • pp.12-16
    • /
    • 2020
  • Chronic otitis media (COM) is a chronic inflammatory disease which affects the middle ear, mastoid cavity. It presents hearing loss, ear pain, dizziness, headache, temporomandibular joint (TMJ) inflammation and intracranial complication. Intracranial complications such as skull base osteomyelitis (SBO) may occur secondary to COM due to transmission of infection by a number of possible routes. SBO is an uncommon condition with a significant morbidity and mortality if not treated in the early stages. We report a-67-year-old male patient with diabetes and untreated COM who presented atypical severe TMJ, periorbital and postmandibular pain. By computerized tomography (CT), magnetic resonance imaging (MRI) and whole body bone scan (WBBS), he was diagnosed with SBO spreading from untreated COM via infective arthritis of TMJ. Through this case, we suggest proper utilization of diagnostic imaging, especially CT or MRI for the early detection of SBO in the case of COM accompanying with the greater risk of infection developments such as diabetes.