• 제목/요약/키워드: Body Motion Control

검색결과 410건 처리시간 0.032초

가변형 단일 궤도를 이용한 장애물 극복방법에 관한 연구 (Study of a Variable Single-tracked Crawler for Overcoming Obstacles)

  • 김지홍;이창구
    • 제어로봇시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.391-395
    • /
    • 2010
  • In our paper, we propose an asymmetric single-tracked wheel system, and describe its structure and the method for maintaining the length of a transformable track system. And the method is reducing the gap of lengths. Therefore, we propose an efficient structure for transforming and explain motions with kinematics. Our transformable shape single-tracked mobile system has an advantage to overcome an obstacle or stairs by the variable arms in the single unity track system. But we will make the variable shape of tracked system get a drive that has a force to stand against a wall. In this case, we can consider this system to a rigid body and have a notice that this single tracked system is able to get vary shape with the variable arm angle. Considering forces balance along x-axis and y-axis, and moments balance around the center of the mass we have. If this rigid body is standing against a wall and doesn't put in motion, the force of flat ground and the rigid body sets an equal by a friction. In the same way, the force of a wall and the rigid sets an equal by a friction.

슬관절 골관절염환자에서 도수 관절가동술이 통증, 관절가동범위, 신체기능과 균형능력에 미치는 효과 (The Effect of Manual Joint Mobilization on Pain, ROM, Body Function and Balance in Patients with Knee Osteoarthritis)

  • 이남용;권춘숙;송현승
    • 대한물리의학회지
    • /
    • 제10권4호
    • /
    • pp.91-99
    • /
    • 2015
  • PURPOSE: The purpose of this study was to investigate effect of the manual joint mobilization to the patients with knee osteoarthritis and to determine the effect of pain, range of motion, body function and balance after applying it. METHODS: The thirty participants who complained the knee pain were randomly assigned to control (Con) group (n=15) that received the general physical therapy and experimental (Exp) group (n=15) that received the applied the manual joint mobilization and the general physical therapy three times per week, 30 minutes per day for four weeks. It measured the visual analogue scale (VAS), the range of motion (ROM), body function (WOMAC) and balance (TUG). RESULTS: It showed the significantly different between the control group and experiment group in VAS, ROM and WOMAC. After 4 weeks, the experiment group was significantly different from other group in VAS, ROM and WOMAC. But the measurement of balance did not show the significantly difference within group and between groups. CONCLUSION: This results suggest that Manual joint mobilization was effective in pain, ROM, function in patient with knee osteoarthritis.

Development of a Real-time Vehicle Driving Simulator

  • Kim, Hyun-Ju;Park, Min-Kyu;Lee, Min-Cheoul;You, Wan-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.51.2-51
    • /
    • 2001
  • A vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. The driving simulator is effectively used for studying interaction of a driver-vehicle and developing the vehicle system of new concepts. The driving simulator consists of a motion platform, a motion controller, a visual and audio system, a vehicle dynamic analysis system, a vehicle operation system and etc. The vehicle dynamic analysis system supervises overall operation of the simulator and also simulates dynamic motion of a multi-body vehicle model in real-time. In this paper, the main procedures to develop the driving simulator are classified by 4 parts. First, a vehicle motion platform and a motion controller, which generates realistic motion using a six degree of freedom Stewart platform driven hydraulically. Secondly, a visual system generates high fidelity visual scenes which are displayed on a screen ...

  • PDF

디더운동이 캡슐형 내시경의 마찰계수 감소에 미치는 영향 (Influence of Dither Motion on the Friction Coefficient of a Capsule-type Endoscope)

  • 홍예선;최일수;김병규
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.57-63
    • /
    • 2005
  • Development of a locomotive mechanism fer the capsule type endoscopes will largely enhance the ability to diagnose disease of digestive organs. In connection with it, most of researches have focused on an installable locomotive mechanism in the capsule. In this paper, it is introduced that the movement of a capsule type endoscope in digestive organ can be manipulated by magnetic force produced outside human body. Since the magnetic force is provided by permanent magnets, no additional power supply to the capsule is required. Using a robotic manipulator for locating the external magnet, the capsule motion control system can cover the whole human digestive organs. This study is particularly concentrated on dither motion effect to improve the mobility of capsule type endoscope. It was experimentally found out that the friction coefficient between the capsule and digestive organ can be remarkably reduced by superposing yawing or rolling dither motion on the translatory motion. In this paper, the experimental results obtained with the direction, amplitude and frequency of sinusoidal dither motion changed is reported.

모션 캡쳐를 위한 AHRS의 성능 향상 (Performance Improvement of an AHRS for Motion Capture)

  • 김민경;김태연;유준
    • 제어로봇시스템학회논문지
    • /
    • 제21권12호
    • /
    • pp.1167-1172
    • /
    • 2015
  • This paper describes the implementation of wearable AHRS for an electromagnetic motion capture system that can trace and analyze human motion on the principal nine axes of inertial sensors. The module provides a three-dimensional (3D) attitude and heading angles combining MEMS gyroscopes, accelerometers, and magnetometers based on the extended Kalman filter, and transmits the motion data to the 3D simulation via Wi-Fi to realize the unrestrained movement in open spaces. In particular, the accelerometer in AHRS is supposed to measure only the acceleration of gravity, but when a sensor moves with an external linear acceleration, the estimated linear acceleration could compensate the accelerometer data in order to improve the precision of measuring gravity direction. In addition, when an AHRS is attached in an arbitrary position of the human body, the compensation of the axis of rotation could improve the accuracy of the motion capture system.

경추의 전신조정 관절치료가 좌우 관절가동범위에 미치는 영향 (The effect of left & right range of motion according to general coordination manipulation treatment on cervical)

  • 김형수;문상은;채정병;김은영
    • 대한물리치료과학회지
    • /
    • 제10권2호
    • /
    • pp.112-122
    • /
    • 2003
  • The purpose of this study is to search effect that GCM joint treatment gets to right and left range of motion of neck, lumbar, trunk and anke joint. Estimated body deformity using GCM body type assesment chart then measured range of motion of each region. After control group did as act freely after do experiment premeasurement control group did postmeasurement. Each region was measured by measurer who each subject person differs. Experimental group did GCM joint treatment and all measurements each region by measurer who each subject person differs three times measured. When measure with each measurement, measured after leave and walk time interval for 10 minutes. For the analysis of the resulr of experiment the results is change amount comparison increased to keep in mind except ankle joint's dorsiflexion before experiment of experimental group and control group(P<.05). Before an experiment and after an experiment of experimental group, differed to keep in mind in right and left comparison of neck rotation, dorsiflexion, plantaflexin of ankle joint in change amount comparison(P<.05). Neck lateral flexion appears and displayed significantly level right and left difference than rotation after experiment of experimental group(P<.05). Because dorsiflexion, plantefleaion of ankle joint became similar right and left significantly difference did not appear(P<.05).

  • PDF

정적 보행모델에 기반을 둔 4족 보행로봇의 온라인 틸팅 제어알고리즘

  • 이순걸;조창현;홍예선
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.83-91
    • /
    • 2000
  • During static walking of a quadruped walking robot, stability of the robot depends on whether the projection of the mass center is located within the supporting area that is varying with leg motion and formed by standing legs. In this paper, force margin instead of the mass center was used to determine stability and body-tilting method was used to enhance it. On-line control of body tilting was realized with simple reaction feedback based on force margin of the static walking model of the robot instead of complicated calculation. Model reference on-line control where the model searches stable pose for predefined force margin also gave good walking performance.

  • PDF

유전알고리즘을 이용한 18자유도 인간형 로봇의 자세 최적화 (Optimization of Whole Body Cooperative Posture for an 18-DOF Humanoid Robot Using a Genetic Algorithm)

  • 최국진;홍대선
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1029-1037
    • /
    • 2008
  • When a humanoid robot pushes an object with its force, it is essential to adequately control its posture so as to maximize the surplus torque far all joints. For such purpose, this study proposes a method to find an optimal posture of a humanoid robot using a genetic algorithm in such a way that the surplus torque for all joints is maximized. In this study, pushing motion of an 18-DOF humanoid robot is considered. When the robot takes a cooperative motion to push an object, the palms and soles are assumed to be fixed at the object and ground respectively, and are subjected to sense the reaction force from the object and the ground. Then, the torques for all joints are calculated and reflected to fitness function of the genetic algorithm. To verify the effectiveness of the proposed method, a number of simulations with different fitness functions are carried out. The simulation result shows that the proposed method can be adopted to find optimized posture in cooperative motion of a humanoid robot.

The Effect of Visual Feedback on One-hand Gesture Performance in Vision-based Gesture Recognition System

  • Kim, Jun-Ho;Lim, Ji-Hyoun;Moon, Sung-Hyun
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.551-556
    • /
    • 2012
  • Objective: This study presents the effect of visual feedback on one-hand gesture performance in vision-based gesture recognition system when people use gestures to control a screen device remotely. Backgroud: gesture interaction receives growing attention because it uses advanced sensor technology and it allows users natural interaction using their own body motion. In generating motion, visual feedback has been to considered critical factor affect speed and accuracy. Method: three types of visual feedback(arrow, star, and animation) were selected and 20 gestures were listed. 12 participants perform each 20 gestures while given 3 types of visual feedback in turn. Results: People made longer hand trace and take longer time to make a gesture when they were given arrow shape feedback than star-shape feedback. The animation type feedback was most preferred. Conclusion: The type of visual feedback showed statistically significant effect on the length of hand trace, elapsed time, and speed of motion in performing a gesture. Application: This study could be applied to any device that needs visual feedback for device control. A big feedback generate shorter length of motion trace, less time, faster than smaller one when people performs gestures to control a device. So the big size of visual feedback would be recommended for a situation requiring fast actions. On the other hand, the smaller visual feedback would be recommended for a situation requiring elaborated actions.

보행 보조 웨어러블 시스템 설계 (Design of Assistive Wearable System for Walking)

  • 최성대;이상훈
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.111-116
    • /
    • 2019
  • With the recent acceleration of industrial technologies and active research, wearable robot technologies have been applied to various fields. To study the utility of wearable robots, basic research on kinetic mechanisms of the human body, bio-signal analysis, and system control are essential. In this study, we investigated the basic structure of a wearable system and the operating principles of a driving mechanism. The control system and supporting structure, which comprise the driving mechanism, were designed and manufactured. Motion and load analyses were performed simultaneously for the design of the kinematic drive, and the driving mechanism was constructed by analyzing walking motion. The operating conditions of the cylinder were verified by stride via driving experiments. Further, the accuracy and responsiveness of the system were confirmed by comparison with actual motion, and the system safety was validated by applying loads.