• Title/Summary/Keyword: Bobbin probe

Search Result 27, Processing Time 0.023 seconds

Prediction and Analysis of Bobbin ECT Signals generated by Tube Defects near Support Plate (지지대 부근의 전열관 결함으로 인해 발생되는 보빈 와전류신호의 예측 및 분석)

  • Shin, Young-Kil;Lee, Yun-Tai
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.942-944
    • /
    • 2005
  • In this study, eddy current signals from various anomalous defects in the heat exchanger tube are predicted af their signal slope characteristics no analyzed. The signal changes due to frequency increase are also observed. Based in the accumulated knowledge, the analysis of superimposed signal is attempted which includes the effects of support plate. Both differential and absolute bobbin probe signals are analyzed. For the prediction of signals, axisymmetric finite element modeling is used and this leads us to the utilization of slope angle analysis of the signal. Results show that differential signals are useful to locate the position of defect under the support plate and absolute signals no easy to predict and analyze even though they no superimposed signals. Combined use of these two types of signals will accomplish a reliable inspection.

  • PDF

Equivalency Assessment for an Eddy Current System Used for Steam Generator Tubing Inspection

  • Cho, Chan-Hee;Lee, Tae-Hun;Yoo, Hyun-Ju;Moon, Gyoon-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.4
    • /
    • pp.258-267
    • /
    • 2015
  • Eddy current testing is widely used for inspecting steam generator tubing in nuclear power plants (NPPs). The inspection technique for steam generator tubing in NPPs should be qualified in accordance with examination guidelines. When the components of a qualified system such as eddy current tester, probe, and data analysis program, are changed, the equivalency of the modified system to the originally qualified system must be verified. The eddy current tester is the most important part of an eddy current testing system because it excites and transmits alternating currents to the probe, receives coil impedance of the probe and generates signals for anomalies. The Korea Hydro & Nuclear Power Co., Ltd. (KHNP) developed an eddy current testing system with an eddy current tester and data acquisition-analysis program for inspecting the steam generator tubing in NPPs; this system can be used for an array probe and as a bobbin and rotating probes. The equivalency assessment for the currently developed system was carried out, and we describe the results in this paper.

Application and Design of Eddy Current based on FEM for NDE Inspection of Surface Cracks with Micro Class in Vehicular Parts (자동차부품의 마이크로급 표면크랙 탐상을 위한 FEM 를 기반한 와전류 센서 디자인 및 적용)

  • Im, Kwang-Hee;Lee, Seul-Ki;Kim, Hak-Joon;Song, Sing-Jin;Woo, Yong-Deuk;Na, Sung-Woo;Hwang, Woo-Chae;Lee, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.529-536
    • /
    • 2015
  • A defect could be generated in bolts for a use of oil filters for the manufacturing process and then may affect to the safety and quality in bolts. Also, fine defects may be imbedded in oil filter system. So it is very important that such defects be investigated and screened during the multiple manufacturing processes. Therefore, in order effectively to evaluate the fine defects, the FEM simulations were performed to make characterization in the crack detection of the bolts and the parameters such as number of turns of the coil, the coil size, applied frequency were calculated based on the simulation results. Simulations were carried out for the defect signal of eddy current probe. Exciter and receiver were utilized. In this paper, the FEM simulations were performed in both bobbin-type and pancake-type probe, both probes were optimized under Eddy current FEM simulations and the results of calculation were discussed.

Experimental Approach and Simulation-Based Design of Eddy Current Sensors for Inspection of Vehicular Bolts (자동차용 볼트의 검사를 위한 시뮬레이션에 기반한 ECT 센서 설계 및 실험적특성)

  • Im, Kwang-Hee;Lee, Seul-Gi;Kim, Hak-Joon;Song, Sung-Jin;Woo, Yong-Deuck;Ra, Seung-Woo;Lee, Hyung-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.294-301
    • /
    • 2015
  • Oil filters for vehicular parts are used under high and low temperatures as the engine is cooled, and defects can be generated with repeated changes in the operating environment and with changes in the shape, such as very high internal losses for the bolts. Visually checking for defects inside a bolt is impossible. Nondestructive evaluation methods such as eddy current testing (ECT) are recommended as a more effective way to examine inside a bolt and detect surface defects in a short amount of time. In this study, the fit bobbin coil eddy current probe was applied to checking the bolts. The bolt parameters were calculated by using a COMSOL analysis program to obtain parameters for professional interior design and fault diagnosis.

Development of New ECT Probe Separating the Permebility Variation Signal in the SG Tube (증기발생기 전열관의 투자율 변화신호 분리를 위한 신형 탐촉자 개발)

  • Park, Duck-Gun;Ryu, Kwon-Sang;Lee, Jeong-Kee;Son, De-Rac
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • A new ECT probe to separate the ECT signal distortion due to PVC (permeability variation clusters) and ordinary defects created in SG tubes has been developed. The hystersis loops of PVC which are extracted from retired SG (steam generator) tubes of Kori-1 NNP were measured. The tensile tests were performed to identify the mechanism of PVC creation. The conditions detecting the PVC created in 56 tubes were investigated using computer simulation, and the signal processing circuits were inserted in the probe for the digital signal transmission. The new Probe can measure and separate the PVC signal which is created in the SG tubes, and also measures the defects in Ni-sleeving part of SG tubes. furthermore the new ECT probe can measure the defects as fast as bobbin probe, and enhance the testing speed as well as reliability of the defect detection of SG tubes.

A Study on the Profile Change Measurement of Steam Generator Tubes with Tube Expansion Methods

  • Kim, Young-Kyu;Song, Myung-Ho;Choi, Myung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 2011
  • Steam generator tubes for nuclear power plants contain the local shape transitions on their inner or outer surface such as dent, bulge, over-expansion, eccentricity, deflection, and so on by the application of physical force during the tube manufacturing and steam generator assembling and by the sludge (that is, corrosion products) produced during the plant operation. The structural integrity of tubes will be degraded by generating the corrosive crack at that location. The profilometry using the traditional bobbin probes which are currently applied for measuring the profile change of tubes gives us basic information such as axial locations and average magnitudes of deformations. However, the three-dimensional quantitative evaluation on circumferential locations, distributional angle, and size of deformations will have to be conducted to understand the effects of residual stresses increased by local deformations on corrosive cracking of tubes. Steam generator tubes of Korean standard nuclear power plants expanded within their tube-sheets by the explosive expansion method and suffered from corrosive cracks in the early stage of power operation. Thus, local deformations of steam generator tubes at the top of tube-sheet were measured with an advanced rotating probe and a laser profiling system for the two cases where the tubes expanded by the explosive expansion method and hydraulic expansion. Also, the trends of eccentricity, deflection, and over-expansion of tubes were evaluated. The advanced eddy current profilometry was confirmed to provide accurate information of local deformations compared with laser profilometry.

Optimum Combination of Pickup Coil Type and Magnetically Shielded Room for Maximum SNR to Measure Biomagnetism (생체신호 측정을 위한 최대의 신호 대 잡음비를 가지는 검출코일의 형태 와 자기차폐실의 최적 조합)

  • Yu, K.K.;Lee, Y.H.;Kang, C.S.;Kim, J.M.;Park, Y.K.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • We have investigated the optimum combination of the environmental noise condition and type of SQUID pickup coil in order to obtain maximum signal-to-noise ratio (SNR). The measurement probe consists of 1st order gradiometer with pickup coils of 100 mm, 70 mm, and 50 mm baseline length, a 2nd order gradiometer with 50 mm baseline, and a magnetometer. The pickup coils are fabricated by winding Nb wire on a bobbin with 200 mm diameter. Noise and heart signal of a healthy male were measured by various SQUID sensors with different types of pickup coils in various magnetically shielded rooms (MSR), and compared to each other. The shielding factors were found to be 43 dB, 35 dB and 25 dB at 0.1 Hz for MSR-AS, MSR-BS, MSR-CS, respectively. White noises were $3.5\;fT/Hz^{1/2}$, $4.5\;fT/Hz^{1/2}$ and $3\;fT/Hz^{1/2}$ for the 1st order gradiometers, the 2nd order gradiometers, and magnetometer for all MSRs. SNR of the magnetometer was up to 56 dB in MSR-AS, while the 1st order axial gradiometer with 70 mm baseline length was up to 54 dB in MSR-BS. The 2nd order axial gradiometer with 50 mm baseline length of pickup coil was found to be up to 40 dB in MSR-CS.

  • PDF