• 제목/요약/키워드: Board Robot

Search Result 182, Processing Time 0.022 seconds

Development of Realtime Parallel Data Communication Interface for Remote Control of 6-DOF Industrial Robot (산업용 6관절 로봇의 원격제어를 위한 실시간 병렬데이터통신 인터페이스)

  • Choi, Myoung-Hwan;Lee, Woo-Won
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.97-103
    • /
    • 2001
  • This paper presents the development of the I/O Interface for the real time parallel data communication between controller of a six-axis industrial robot(CRS-A460) and an external computer. The proposed I/O Interface consists of the hardware I/O interface and the software that is downloaded to the robot controller and executed by the controller operating system. The constitution of the digital I/O Port for CRS-A460 robot controller and the digital I/O board for IBM-PC are presented as well as the Process Control Program of the robot controller. The developed protocol for the parallel data communication is described. The data communication is tested, and the performance is analysed. In particular, it is shown that the real-time constraint of the robot controller process is satisfied.

  • PDF

Robot Driving System and Sensors Implementation for a Mobile Robot Capable of Tracking a Moving Target (이동물체 추적 가능한 이동형 로봇구동 시스템 설계 및 센서 구현)

  • Myeong, Ho Jun;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.607-614
    • /
    • 2013
  • This paper proposes a robot driving system and sensor implementation for use with an education robot. This robot has multiple functions and was designed so that children could use it with interest and ease. The robot recognizes the location of a user and follows that user at a specific distance when the robot and user communicate with each other. In this work, the robot was designed and manufactured to evaluate its performance. In addition, an embedded board was installed with the purpose of communicating with a smart phone, and a camera mounted on the robot allowed it to monitor the environment. To allow the robot to follow a moving user, a set of sensors combined with an RF module and ultrasonic sensors were adopted to measure the distance between the user and the robot. With the help of this ultrasonic sensors arrangement, the location of the user couldbe identified in all directions, which allowed the robot to follow the moving user at the desired distance. Experiments were carried out to see how well the user's location could be recognized and to investigate how accurately the robot trackedthe user, which eventually yielded a satisfactory performance.

Intelligent Countenance Robot, Humanoid ICHR (지능형 표정로봇, 휴머노이드 ICHR)

  • Byun, Sang-Zoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.175-180
    • /
    • 2006
  • In this paper, we develope a type of humanoid robot which can express its emotion against human actions. To interact with human, the developed robot has several abilities to express its emotion, which are verbal communication with human through voice/image recognition, motion tracking, and facial expression using fourteen Servo Motors. The proposed humanoid robot system consists of a control board designed with AVR90S8535 to control servor motors, a framework equipped with fourteen server motors and two CCD cameras, a personal computer to monitor its operations. The results of this research illustrate that our intelligent emotional humanoid robot is very intuitive and friendly so human can interact with the robot very easily.

  • PDF

METRO - A Free Ranging Mobile Robot with a Laser Range Finder (METRO - 레이저 거리계를 장착한 자율 이동로봇)

  • Cha, Young-Youp;Gweon, Dae-Gap
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.200-208
    • /
    • 1996
  • This paper describes the mechanism, guidance, sensor system, and navigation algorithm of METRO, a free ranging mobile robot. METRO is designed for use in structured surroundings or factory environments rather than unstructured natural environments. An overview of the physical configuration of the mobile robot is presented as well as a description of its sensor system, an omnidirectional laser range finder. Except for the global path planning algorithm, a guidance and a navigation algorithm with a local path planning algorithm are used to navigate the mobile robot. In METRO the computer support is divided into a supervisor with image processing and local path planning and a slave with motor control. The free ranging mobile robot is self-controlled and all processing being performed on board.

  • PDF

Indoor Localization of a Mobile Robot Using External Sensor (외부 센서를 이용한 이동 로봇 실내 위치 추정)

  • Ko, Nak-Yong;Kim, Tae-Gyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.420-427
    • /
    • 2010
  • This paper describes a localization method based on Monte Carlo Localization approach for a mobile robot. The method uses range data which are measured from ultrasound transmitting beacons whose locations are given a priori. The ultrasound receiver on-board a robot detects the range from the beacons. The method requires several beacons, theoretically over three. The method proposes a sensor model for the range sensing based on statistical analysis of the sensor output. The experiment uses commercialized beacons and detector which are used for trilateration localization. The performance of the proposed method is verified through real implementation. Especially, it is shown that the performance of the localization degrades as the sensor update rate decreases compared with the MCL algorithm update rate. Though the method requires exact location of the beacons, it doesn't require geometrical map information of the environment. Also, it is applicable to estimation of the location of both the beacons and robot simultaneously.

Development of Mobile Robot for Rough Terrain (야지 주행을 위한 견마형 로봇 개발)

  • Lee, Ji-Hong;Shim, Hyung-Won;Jo, Kyoung-Hwan;Hong, Ji-Mi;Kim, Jung-Bae;Kim, Sung-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.883-895
    • /
    • 2007
  • In this work, we present the development of a patrol robot which is intended to navigate outdoor rough terrain. Proposed mechanism consists of six legs for overcoming an obstacle, and six wheels for traveling. Also, in order to absorb vibration in rough terrain effectively, the slide-spring system and tubed type tire are adopted to each leg and each wheel. The control system of robot consists of several imbedded boards for management of lots of diverse devices such as sensors designed for rough terrain, motor controllers, camera, micro controller and so on. And the base system of the robot is designed to operate in real time and to surveille in the vicinity of the robot, and the robot system is controlled by wireless LAN connected to GUI-based remote control system, while CAN communication connects the control board and the device controllers for sensors and motor controllers. For operating this robot system efficiently, we propose the control algorithms for autonomous navigation using GPS, stabilization maintenance by posture control, obstacle-avoidance by impedance control, and obstacle-overcoming with interference-avoidance between wheels. The performance of the robot and the proposed algorithms are tested and proved by a set of experiments in outdoor rough terrain.

A Framework for Cognitive Agents

  • Petitt, Joshua D.;Braunl, Thomas
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.229-235
    • /
    • 2003
  • We designed a family of completely autonomous mobile robots with local intelligence. Each robot has a number of on-board sensors, including vision, and does not rely on global positioning systems The on-board embedded controller is sufficient to analyze several low-resolution color images per second. This enables our robots to perform several complex tasks such as navigation, map generation, or providing intelligent group behavior. Not being limited to playing the game of soccer and being completely autonomous, we are also looking at a number of other interesting scenarios. The robots can communicate with each other, e.g. for exchanging positions, information about objects or just the local states they are currently in (e.g. sharing their current objectives with other robots in the group). We are particularly interested in the differences between a behavior-based approach versus a traditional control algorithm at this still very low level of action.

A Stereo-Vision System for 3D Position Recognition of Cow Teats on Robot Milking System (로봇 착유시스템의 3차원 유두위치인식을 위한 스테레오비젼 시스템)

  • Kim, Woong;Min, Byeong-Ro;Lee, Dea-Weon
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.44-49
    • /
    • 2007
  • A stereo vision system was developed for robot milking system (RMS) using two monochromatic cameras. An algorithm for inverse perspective transformation was developed for the 3-D information acquisition of all teats. To verify performance of the algorithm in the stereo vision system, indoor tests were carried out using a test-board and model teats. A real cow and a model cow were used to measure distance errors. The maximum distance errors of test-board, model teats and real teats were 0.5 mm, 4.9 mm and 6 mm, respectively. The average distance errors of model teats and real teats were 2.9 mm and 4.43 mm, respectively. Therefore, it was concluded that this algorithm was sufficient for the RMS to be applied.

A Study on a Visual Sensor System for Weld Seam Tracking in Robotic GMA Welding (GMA 용접로봇용 용접선 시각 추적 시스템에 관한 연구)

  • 김동호;김재웅
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.208-214
    • /
    • 2001
  • In this study, we constructed a visual sensor system for weld seam tracking in real time in GMA welding. A sensor part consists of a CCD camera, a band-pass filter, a diode laser system with a cylindrical lens, and a vision board for inter frame process. We used a commercialized robot system which includes a GMA welding machine. To extract the weld seam we used a inter frame process in vision board from that we could remove the noise due to the spatters and fume in the image. Since the image was very reasonable by using the inter frame p개cess, we could use the simplest way to extract the weld seam from the image, such as first differential and central difference method. Also we used a moving average method to the successive position data or weld seam for reducing the data fluctuation. In experiment the developed robot system with visual sensor could be able to track a most popular weld seam. such as a fillet-joint, a V-groove, and a lap-joint of which weld seam include planar and height directional variation.

  • PDF

Design and Implementation of a Bird Type Biped Robot for Entertainment (엔터테인먼트용 조류형 2족 보행 로봇의 설계 및 구현)

  • Kim Dong-Jin;Yu Seung-Hwan;Shen Yun-De;Jang Seung-Ik;Kee Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.38-45
    • /
    • 2005
  • In this paper, a bird type biped robot for entertainment controlled by R/C servo motors, is built using the embedded RTOS (Real Time Operating System). ${\mu}C/OS-II$ V2.00 is used fur RTOS and the board 80C196KC for main CPU. A control algorithm of R/C servo motors is proposed on ${\mu}C/OS-II's$ preemptive and deterministic property without any extra PWM module. The realized biped robot has 19DOF, that is, 12DOF for both legs, 6DOF for both arms and 1DOF for neck. To verify the proper walking process, ZMP(Zero Moment Point) theory is applied and the simulation has been done by ADAMS.