• Title/Summary/Keyword: Blue-light-emitting polymer

Search Result 76, Processing Time 0.028 seconds

Color variation improvement by introducing double emission layers in WPLEDs

  • Kwon, Soon-Kab;Lee, Yong-Kyun;Park, Tae-Jin;Jeong, Su-Hyeon;Jeon, Woo-Sik;Kwon, Jang-Hyuk;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.994-997
    • /
    • 2006
  • We have fabricated white polymeric light-emitting devices (WPLEDs) from polyfluorene-based (PFO) blue and MEH-PPV polymer blending systems. A device structure of ITO / PEDOT:PSS / Blending polymer / Blue polymer / LiF / Al was employed. This structure of double emission layers results in the significant improvement of white color shift phenomenon. A current efficiency of 4.67 cd/A ($3,900cd/m^2$, 6.4V) and a brightness value of $17,600cd/m^2$ at 9.4 V with (0.34, 0.35) CIE coordinates at 5V and (0.29, 0.29) at 9V were obtained.

  • PDF

First Examples of Poly(9,9-spiro bifluorene) Derivatives Containing Heterotoms : Syntheses, Optical, and Electroluminescent Properties (최초로 헤테로 원자를 포함하는 폴리(9,9-스파이로 바이플루오렌) 유도체의 합성과 그들의 광학적, 유기전계발광특성)

  • Kim, Myeong-Jong;Lee, Ji-Hoon;Park, Jong-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.465-465
    • /
    • 2008
  • Conjugated polymers have attracted much scientific and technological research interest during the past few decades because of their potential use such as polymer light-emitting diodes (PLEDs).1,2 Particularly, lots of phenylene-based polymers such as polyfluorene and its derivatives have been synthesized because of their high photoluminescence quantum efficiencies and thermal stabilities. However, troublesome long wavelength emission in polymer film of polyfluorenes on heating during device formation or operation has been the crucial problem for practical applications. The source of the long wavelength emission was initially believed to be solely due to excimer emission as a result of polymer aggregation. It has also recently been correlated with emissions from ketonic defects in the fluorene units. Many efforts have been made to reduce the tendency to red-shifted emission. Here, we report for the first time the design and synthesis of novel 9,9-spiro bifluornene-based polymers containing heteroatoms such as N, S in its molecular skeleton. Especially, the 9,9-spiro bifluornene-based polymers containing N atom showed stable blue electroluminescence, which did not show spectral change upon thermal annealing.

  • PDF

Stable efficiency roll-off in blue phosphorescent organic light-emitting diodes using a mixed host structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Lee, Jun-Yeob;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.192-195
    • /
    • 2009
  • We developed highly efficient blue PHOLEDs with reduced roll-off by using a mixed host structure. The balanced charge carrier injection and the distributed recombination zone within emissive layer resulted in a highly stable efficiency roll-off with quantum efficiencies of 20.1 and 18.1 % at a luminance of 1000 and 10000 cd/$m^2$.

  • PDF

Photopatternability of Poly(vinylcarbazole) Bearing Cinnamate Pendants and Its Blends with a Soluble Poly(p-phenylene vinylene) Derivative

  • Yu, Young-Jun;Lee, Seung-Hun;Choi, Dong-Hoon;Jin, Jung-Il;Tessler, Nir
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.142-146
    • /
    • 2007
  • Poly[(1-(9-carbazoly1)ethylene)-co-(3-cinnamoyloxyoctyl-9-carbazolyl)] ethylene (PVK-Cin) was prepared by tethering cinnamate pendants to a carbazole group via an octylene spacer. The photopatternability of the new PVK based-polymer was investigated using a photocrosslinking reaction under UV light illumination $(\lambda=254nm)$. Blends of the PVK-Cin and a soluble poly(phenylene vinylene) (CzEh-PPV) were employed to study the photocrosslinking behavior. Well resolved lithographic patterns were observed in these polymer systems. PVK-Cin produced a blue light emitting pattern both before and after the photocrosslinking reaction. The blends of PVK-Cin and CzEh-PPV also showed corresponding emissions at 398 and 525 (560) nm in the film state.

Development of P-OLED Materials For Displays and Lighting

  • Brown, Scott;Cass, Michael;Conway, Natasha;Grizzi, Ilaria;McKiernan, Mary;Roberts, Matthew;Tsubata, Yoshiaki;Sekine, Chizu;Yamada, Takeshi;Wilson, Richard
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.431-434
    • /
    • 2007
  • Rapid progress has been made in the development of commercially viable Light Emitting Polymer (LEP) materials for display and lighting applications. This presentation will focus on: ${\bullet}$ Degradation studies that have led to the design of new and improved materials ${\bullet}$ Recent lifetime and efficiency results for red, green, blue, and white polymers ${\bullet}$ Challenges of formulating inks that can be used in a production environment

  • PDF

Fabrication and characteristics for the organic light emitting device from single layer poly(N-vinylcarbazole) (단층 poly(N-vinylcarbazole) 유기물 전기발광 소자의 제작 및 특성)

  • 윤석범;오환술
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.55-61
    • /
    • 1998
  • Organic light emitting devices from a single layer thin film with a hole transport polymer, poly(N-vinylcarbazole) (PVK) doped with 2-(4-bi phenyl)-5-(4-t-butyl-phenyl) -1,3,4-oxadiazole (Bu-PBD) as electron transporting molecules and Coumurine 6(C6), 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), Rhodamine B as a emitter dye were fabricated. The sing1e layer structure and the use of soluble materials simplify the fabrication of devices by spin coating technique. The active layer consists of one polymer layer that is simply sandwiched between two electrodes, indium-tin oxide (ITO), and aluminum. In this structure, electron and hole inject from the electrodes to the PVK : Bu-PBD active layer. Respectively, Blue, green and orange colored emission spectrum by the use of TPB, C6, Rhodamine B dye emitted at 481nm, 500nm and 585nm were achieved during applied voltages. PVK materials can be useful as the host polymer to be molecularly doped with other organic dyes of the different luminescence colors. And EL color can be tuned to the full visible wavelength.

  • PDF

Dependence of $O_2$ Plasma Treatment of ITO Electrode on Electrical and Optical Properties of Polymer Light Emitting Diodes (ITO 투명전극의 $O_2$ 플라즈마 처리가 고분자 유기발광다이오드의 전기.광학적 특성에 미치는 영향)

  • Gong, Su-Cheol;Back, In-Jea;Yoo, Jea-Huyk;Lim, Hun-Sung;Yang, Sin-Huyk;Shin, Sang-Bea;Shin, Ik-Seup;Chang, Gee-Keun;Chang, Ho-Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.93-97
    • /
    • 2006
  • Polymer light emitting diodes (PLEDs) are expected to be commercialized as next generation displays by advantages of the fast response time, low driving voltage and easy manufacturing process for large sized flexible display. Generally, the electrical and optical properties of PLEDs are affected by the surface conditions of transparent electrode. The PLED devices with ITO/PEDOT:PSS/PVK/PFO-poss/LiF/Al structures were prepared by using the spin coating method. For this, PEDOT:PSS(poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)) Al 4083 and PVK(N-vinylcabozole) were used as hole injection and transport layers. The PFO-poss(poly(9,9-dioctylfluorene)) was used as the emitting layer. The dependence of $O_2$ plasma treatment of ITO electrode on the electrical and optical properties of PLEDs were investigated. The sheet resistances increased slightly with an improved surface roughness of ITO electrode as the RF power increased during $O_2$ plasma treatment. The PLED devices prepared on the ITO/Glass substrates, which were plasma-treated at 40 watt in RF power for 30 seconds under 40 mtorr $O_2$ pressure, showed the maximum external emission efficiency of 0.86 lm/W and the maximum luminance of $250\;cd/m^2$, respectively. The CIE color coordinates are ranged $X\;=\;0.13{\sim}0.18$ and $Y\;=\;0.10{\sim}0.16$, showing blue color. emission.

Synthesis and Properties of PCPP-Based Conjugated Polymers Containing Pendant Carbazole Units for LEDs

  • Jin, Young-Eup;Kim, Sun-Hee;Lee, Hyo-Jin;Song, Su-Hee;Kim, Yun-Na;Woo, Han-Young;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2419-2425
    • /
    • 2007
  • New poly(cyclopenta[def]phenanthrene) (PCPP)-based conjugated copolymers, containing carbazole units as pendants, were prepared as the electroluminescent (EL) layer in light-emitting diodes (LEDs) to show that most of them have higher maximum brightness and EL efficiency. The prepared polymers, Poly(2,6-(4-(6-(Ncarbazolyl)- hexyl)-4-octyl-4H-cyclopenta[def]phenanthrene)) (CzPCPP10) and Poly(2,6-(4-(6-(N-carbazolyl)- hexyl)-4-octyl-4H-cyclopenta[def]phenanthrene))-co-(2,6-(4,4-dioctyl-4H-cyclopenta[def]phenanthrene)) (CzPCPP7 and CzPCPP5), were soluble in common organic solvents and used as the EL layer in light-emitting diodes (LEDs) of configuration with ITO/PEDOT/polymer/Ca/Al device. The polymers are thermally stable with glass transition temperature (Tg) at 77-100 °C and decomposition temperature (Td) at 423-457 °C. The studies of cyclic voltammetry indicated same HOME levels in all polymers, although the ratios of carbazole units are different. In case of PLEDs with configuration of ITO/PEDOT/CzPCPPs/Ca/Al device, The EL maximum peaks were around 450 nm, which the turn-on voltages were about 6.0-6.5 V. The maximum luminescence of PLEDs using CzPCPP10 was over 4400 cd/m2 at 6.5 V, which all of the maximum EL efficiency were 0.12 cd/A. The CIE coordinates of the EL spectrum of PLEDs using CzPCPP10 was (0.18, 0.08), which are quite close to that of the standard blue (0.14, 0.08) of NTSC.

Improved On-off Property of SiO2 Embedded Polyfluorene Polymer-OLED (SiO2의 첨가를 통한 Polyfluorene계 Polymer-OLED의 발광 동작 개선 가능성)

  • Jeon, Byung Joo;Kim, Hyo Jun;Kim, Jong Su;Jeong, Yong Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.40-44
    • /
    • 2017
  • The effect of weak dielectric silicone dioxide($SiO_2$) embedded in polyfluorene(PFO) emitting layer of polymer-based multi structure OLED was investigated. Indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)/poly(9,9-di-n-octylfluorenyl-2,7-diyl)(PFO)/2,2,2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)/aluminum(Al) structure OLED was fabricated by spin-coating method. Applied electric field causes some effect on $SiO_2$ in PFO layer. Thus, interaction between polymers and affected $SiO_2$ might generate electrical and luminance properties change. Experimental results, show the reduced threshold voltage of 6 V(from 23 V to 17 V). The maximum current density was rather increased from $71A/m^2$ to $610A/m^2$ and maximum brightness was also increased from $7.19cd/m^2$ to $41.03cd/m^2$, 9 and 6 times each. Additionally we obtained colour broadening result due to the increasing of blue-green band emission. Consequently we observed that electrical and luminance properties are enhanced by adding $SiO_2$ and identified the possibility of controlling the emission colour of OLED device according to colour broadening.

  • PDF

NOVEL FIBER OPTIC COLOR SYNTHESIZER FOR PICO-PROJECTION DISPLAY WITH AN ULTRA WIDE COLOR GAMUT

  • Oh, Kung-Hwan;Lee, Sei-Jin;Ha, Woo-Sung;Park, Min-Kyu;Kim, Jun-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1327-1330
    • /
    • 2008
  • A novel fiber optic solution is provided to efficiently mix visible colors. Full color synthesis was achieved utilizing a novel $3{\times}1$ hard polymer clad fiber (HPCF) coupler along with red, green and blue (RGB) light emitting diode (LED) primaries. Varying the intensities of RGB LEDs that are coupled to three input ports, the device rendered a full color with an ultra wide CIE color gamut. Potential applications in pica-projection displays and LED backlights will be discussed.

  • PDF