• 제목/요약/키워드: Blue-Min

Search Result 838, Processing Time 0.453 seconds

Characterization of Natural Gardenia Color with Systhetic Color (천연치자색소의 합성색소와의 특성 비교)

  • 김희구;김옥도;이상준
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.5
    • /
    • pp.506-512
    • /
    • 1998
  • In order to replance systhetic colors by natural colors as food additive, properties of Gardenia yellow color and Gardenia blue color were compared with Food yellow No. 4 and Food blue No. 1. Color differeance between Food yellow No. 4 and Gardenia yellow color was 7.55. Thermal stability of Food yellow No. 4 was above 99%. On the other hand, in case of Gardenia yellow color, showed adove 90% of residual color units in 8$0^{\circ}C$$\times$30min and 10$0^{\circ}C$$\times$30min at pH 7.0 but 75% in 121$^{\circ}C$$\times$15min. Difference of light stability between Food yellow No. 4 and gardenia yellow color was about 18%. Addition of ascorbic acid was increased about 6% in light stability. Color difference between Food blue No. 2 and Gardenia blue color was 107. Thermal stability of Food blue No. 2 was above 99%. But Gardenia blue color showed 92% of residual color units in 8$0^{\circ}C$$\times$30min and 10$0^{\circ}C$$\times$30min at pH 7.0 but 90% in 121$^{\circ}C$$\times$15min. Difference of light stability between Food blue No. 4 and Gardenia blue color was about 8%. Addition of -tocopherol was increased about 4% in light stability of Gardenia blue color.

  • PDF

Removal and Growth Inhibition of Red-tide Organisms by Blue-Min Treatment (블루민의 적조생물 제거와 생장저해능)

  • Gwak, Seung-Kuk;Jung, Min-Kyung;Lee, Eun-Ki;Cho, Kyung-Je
    • ALGAE
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2004
  • Blue-Min was initially developed as an adsorbent for harmful gas removal and recently improved to apply to livestock, agriculture and aquaculture as an assistant feed. In the Blue-Min treatment, growth of harmful algae (Cochlodinium polykrikoides and the others causing the red-tide in the ocean) were inhibited below 10% in comparison with control and coagulation removal of harmful alge with Blue-Min treatment was more efficient than that of yellow loess treatment. It would be expected that the Ble-Min can be useful for the extirpator against the red-tide organisms and restrain the toxic algal growth around the fish aquaculture using the assistant feed. Recently, its utility has become to be diverse as it was revealed that aquaculture productivity increase by its application and, in addition, that it improve the water quality or sediment conditions in the aquaculture of Chinese White Shrimp. When Blue-Min was treated with the proper dose, the growth inhibition of Microcystis aeruginosa and lsochrysis galbana, which are typical red-tide organisms in freshwaters and food organisms in aquaculture, respectively, were less than that of marine red-tide organisms, while their growth slightly increased with low concentration treatiment. In addition, polyunsaturated fatty acids (PUFA) content of I. galbana slightly increase with the Blue-Min treatment. Through our research, the Blue-Min has diverse and comples function against various biological organisms and is proved as a biological activator or depressor.

Methylene blue-catalyzed photodecomposition of guanine (Methylene Blue에 의한 guanine의 광분해 현상)

  • 홍순우;변우현
    • Korean Journal of Microbiology
    • /
    • v.10 no.1
    • /
    • pp.35-40
    • /
    • 1972
  • 1) The photodecomposition rate of guanine being catalized by methylene blue ws 53.7% in contrast with 9.3% that of dark control for 180 min. 2) In guanine control, the decomposition rate was very low. For 180 min., the rate was 8.1% in illuminated sample and 3.9% in non-illuminated sample. 3) The decomposition rate of methylene blue was obviously interfered by the existence of guanine. In guanine and methylene blue mixture solution, the net decomposition rate, excluding that of dark control ws 39.2% and in dye only solution, it was 48.5%.

  • PDF

A study of Ozone Oxidation of Methylene Blue (Methylene Blue의 오존(O3) 산화반응에 관한 연구)

  • Lee, Cheal-Gyu;Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.366-371
    • /
    • 2005
  • In this study treatment efficiencies of methylene blue were evaluated in term of BOD, COD, TOC, absorbance and initial decolorization rates. Ozonation of the dye in distilled water was performed in a laboratory scale cylindrical batch reactor. The decolorization process of methylene blue was carried out by bubbling ozone at the bottom of a bubble column reactor containing the dye solution. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the (${\lambda}_{max}$, 660 nm), was almost complete after 40 min with an ozone concentration of $50{\pm}10mg/L$. The $TOC/TOC_0$ ratio after ozonation was about 83.8%, the COD was diminished to 44.0% of the initial value. The $BOD_5/COD$ ratio was increased from 64.2% to about 90.8%, indicating an enhancement of biodegradable compounds in the ozonated solutions. The pseudo first-order rate constants of the ozonation was $3.30{\times}10^{-2}min^{-1}$ and the activation energy was $3.01kcal{\cdot}mol^{-1}$ at $30^{\circ}C$.

Photoinhibition and Recovery of Anacystis nidulans Adapted in Blue-Green Light

  • Young-Nam Hong
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • Photoinhibition and its recovery of spectrally adapted Anacystis nidulans were studied. Phycocyanin and Chl content and phycocyanin/Chl ratio were increased in cells grown under blue-green light compared with those grown in white light. Photosynthetic activities of white light and blue-green light grown cells were reduced by 50% after 15 min and 10 min of photoinhibitory light treatment (1.2 mmol·m-2s-1), respectively, largely due to the decline of PSII activities. However, their activities were recovered fully after 30 min incubation under weak light. Treatment of rifampicin and chloramphenicol magnified the photoinhibitory effects and suppressed the recovery with disappearance of susceptibility to photoinhibition and delayed the recovery process, indicating no significant differences in phosphorylation, dephosphorylation and protease activity between two cells. Therefore, it is suggested that the increased sensitivity of blue-green adapted cells might be attributed to the decline of protein synthesis, and phosphorylation-dephosphorylation of protein and protease activity might be involved in the recovery process.

  • PDF

Optimal Mixing Ratio of Seafood Sauce with Blue Crab (Portunus trituberculatus)

  • Park Kyong-Tae;Kim Min-Soo;Kwon Byung-Min;Shin Eun-Soo;Ryu Hong-Soo;Jang Dae-Heung
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.4
    • /
    • pp.195-200
    • /
    • 2005
  • This study optimized the mixing ratios of seafood sauce with blue crab for maximal sensory attributes using a response surface methodology with central composite design. It evaluated sensory appeal, nutritional value, and some rheological properties. The optimal formulation appeared to be 252 g of tomato paste, 78 g of chopped garlic, and 519 g of blue crab block; this ratio resulted in a predicted sensory score of 5.7 (on a 7-point scale) for overall acceptability. Addition of blue crab block increased moisture, ash, and protein contents in various sauces, but fat contents were similar in every sauce. Major free amino acids such as glutamic acid, phospho serine, asparagine, and arginine composed about $60\%$ of the total amino acid content. Standard and optimized sauces were red and light yellow, and those color values were significantly higher than in American-style sauces. Optimal viscosity was half the value of American-style sauces; more blue crab block added to the sauce resulted in lower viscosity. Adding this sauce to seafood dishes will likely aid development of flavoring substances.

Synthesis and Characterization of Poly[9,10-diphenylanthracene-4$^\prime$, 4$^\prime^\prime$-ylenevinylene-3,6-(N-2-ethylhexyl)carbazole]

  • Kim, Yun Mi;Park, Gi Min;Gwon, Sun Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.975-978
    • /
    • 2001
  • A novel poly[9,10-diphenylanthracene-4',4"-ylenevinylene-3,6-(N-2-ethyl hexyl)carbazole] containing alternate diphenylanthracene and carbazole unit was synthesized by the Wittig reaction. The obtained polymer was soluble in common organic solvents and thermally stable up to 380 $^{\circ}C.$ The polymer gives rise to bright blue fluorescence both in solution and in thin solid films. The light emitted from the device (ITO/polymer/Al) was greenish-blue in color and clearly visible in daylight.

Photocatalytic Degradation of Brilliant Blue FCF with TiO2 Suspension (TiO2현탁액에 의한 Brilliant Blue FCF의 광촉매 분해)

  • Jeong, Gap Seop;Choe, Su Il
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.599-603
    • /
    • 2004
  • In a batch reactor, the characteristics of photocatalytic degradation of brilliant blue FCF in titanium dioxide suspension was studied under the irradiation of ultra-violet ray. Photocatalytic degradation in anatase type of TiO$_2$ was more effective than in rutile type of $TiO_2$ below the dosage of 5g. The degradation rate was slightly increased with decreasing initial pH of brilliant blue FCF aqueous solution, but rapidly increased with the addition of oxidant. Potassium bromate acted as more effective oxidant than ammonium persulfate. The photocatalytic degradation rate of brilliant blue FCF was pseudo-first order with rate constants of 0.012, 0.006 and $0.003min^{-1}$ at initial pH 3.1, 5.2 and 7.1 of brilliant blue FCF solution, respectively.

Preparation of Monodisperse Blue-colored Polymeric Particles with High Zeta-potential (높은 제타전위를 갖는 단분산의 블루착색 고분자미립자의 제조)

  • Lee, Ki-Chang;Nam, Sang-Yong
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.109-115
    • /
    • 2012
  • Monodisperse blue-colored poly(styrene-co-acrylic acid) latices were successfully prepared by seeded emulsion polymerization. Blue-colored latices with carboxyl anionic charge on the surface were synthesized at the second stage with the introduction of Blue 606 dye, acrylic acid, and 0.21 ${\mu}m$-polystyrene seed. All the blue-colored latices synthesized in this study were in the size range of 0.25~0.42 ${\mu}m$ and all uniform with less than 1.01 in PSD. The particle size increased with the addition of acrylic acid being delayed and colloidally stable latices were obtained over 30 min after its addition. The blue-colored latex with 20 wt% acrylic acid showed -145 mV of zeta-potential and $-9.4{\times}10^{-6}\;cm^2/Vs$ of electrophoretic mobility, and with 25 wt% of DVB showed high $T_g$ at 396.7 K.