• Title/Summary/Keyword: Blue-Green Algae

Search Result 173, Processing Time 0.026 seconds

The Effect of Chemical Treatments on Biodeterioration of Stone Cultural Properties

  • Kim, Gwang Hoon;Klotchkova, Tatiana A.;Suh, Man-Cheol
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.101-105
    • /
    • 2001
  • The biodeterioration with blue-green algae has been studied since 1997 up to 2000 in the tomb of King Mooryong in Kongiu, Korea. Biodeterioration in the tomb initially started from the formation of micro-organismic biofilm that had been suggested to make minor changes on the stone surface. This study revealed that the biofilm formed by microorganisms could result in permanent damages on stone cultural properties. The application of a chemical, 'K2Ol', developed by the author successfully removed fouling of biofilm on the surfaces of stone cultural properties. When small pieces of granite stone were embedded in the solution to study the side effects of the chemicals for a period of three months, the mechanical stability was 0.97 compared to control and there was no change in color. Biodeterioration is one of the most harmful factors that decrease the value of stone cultural properties but it may be treated with a development of proper chemicals.

  • PDF

Nutrient removal from secondary effluent using filamentous algae in raceway ponds

  • Min, Kyung-Jin;Lee, Jongkeun;Cha, Ho-Young;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.191-199
    • /
    • 2019
  • In this study, we investigated the cultivation possibility using Hydrodictyon reticulatum in a continuous raceway pond as a tertiary sewage treatment plant. The cultivation possibility was evaluated by varying the light quantity, wavelength, and hydraulic retention time (HRT). Experimental results showed that the growth rates of algae and the removal efficiencies of nutrients increased as the light quantity increased, and the maximum photosynthetic rate was maintained at $100{\mu}mol/m^2{\cdot}s$ or higher. When wavelength was varied, nutrient removal efficiency and growth rate increased in the following order: green light, red light, white light, and blue light. The nutrient removal efficiencies and algae productivity in HRT 4 d were better than in HRT 8 d. We conclude that if Hydrodictyon reticulatum is cultivated in a raceway pond and used as a tertiary treatment facility in a sewage treatment plant, nutrients can be effectively removed, and production costs can be reduced.

Inferring the Molecular Phylogeny of Chroococcalian Strains (Blue-green algae/Cyanophyta) from the Geumgang River, Based on Partial Sequences of 16S rRNA Gene

  • Lee, Wook-Jae;Bae, Kyung-Sook
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.335-339
    • /
    • 2002
  • Partial sequences of 16S rRNA gene of five chroococcalian blue-green algal strains, Aphanothece nidulans KCTC AG10041, Aphanothece naegelii KCTC AG10042, Microcystis aeruginosa KCTC AG10159, Microcystis ichthyoblabe KCTC AG10160, and Microcystis viridis KCTC AG10198, which were isolated from water from the Geumgang River, were determined and were inferred their phylogenetic and taxonomic positions among taxa of order Chroococcales. Most taxa of Chroococcales whose partial 16S rRNA gene sequences were aligned in this study, are clustered with other related taxa. Aphanothece nidulans KCTC AG10041 and Aphanothece naegelii KCTC AG10042 made a cluster with other European species of these genera, which supported 100% of the bootstrap trees with a very high sequence similarity (97.4-99.4%) in this study. Three strains, Microcystis aeruginosa KCTC AG10159, M. ichthyoblabe KCTC AG10160, and M. viridis KCTC AG10198, formed a cluster with other Microcystis spp. supported 100 % of the bootstrap trees with a similarity of 97.0-99.9% except for two strains. However, this phylogentic tree made no resolution among the species of Microcystis spp. The topology of the tree reconfirmed the taxonomic status of three species of Microcystis, identified in this study based on the morphology, as three colonial types of Microcystis aeruginosa com. nov. Otsuka et al. (1999c). The genera of chroococcalian cyanophytes are heterogeneously clustered in these sequence analyses. We suggest that more molecular studies on the genera of Chroococcales with reference strains, widely collected from restricted geographic or environmental ranges, get accurate taxonomic or phylogenetic determinations.

Technical and Strategic Approach for the Control of Cyanobacterial Bloom in Fresh Waters (담수수계에서 남조류 증식억제의 기술적, 전략적 접근)

  • Lee, Chang Soo;Ahn, Chi-Yong;La, Hyun-Joon;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Cyanobacteria (blue-green algae) are not only the first oxygenic organisms on earth but also the foremost primary producers in aquatic environment. Massive growth of cyanobacteria, in eutrophic waters, usually changes the water colour to green and is called as algal (cyanobacterial) bloom or green tide. Cyanobacterial blooms are a result of high levels of primary production by certain species such as Microcystis sp., Anabaena sp., Oscillatoria sp., Aphanizomenon sp. and Phormidium sp. These cyanobacterial species can produce hepatotoxins or neurotoxins as well as malodorous compounds like geosmin and 2-methylisoborneol (MIB). In order to solve the nationwide problem of hazardous cyanobacterial blooms in Korea, the following technically and strategically sound approaches need to be developed. 1) As a long-term strategy, reduction of the nutrients such as phosphorus and nitrogen in our water bodies to below permitted levels. 2) As a short term strategy, field application of combination of already established bloom remediation techniques. 3) Development of emerging convergence technologies based on information and communication technology (ICT), environmental technology (ET) and biotechnology (BT). 4) Finally, strengthening education and creating awareness among students, public and industry for effective reduction of pollution discharge. Considering their ecological roles, a complete elimination of cyanobacteria is not desirable. Hence a holistic approach mentioned above in combination to addressing the issue from a social perspective with cooperation from public, government, industry, academic and research institutions is more pragmatic and desirable management strategy.

Water Trophic States and Biological Indicators of Phytoplankton at Six Reservoirs in Gyeonggi-do (경기도 6개 호소의 수질 영양단계 및 지표종에 관한 연구)

  • Lim, An-Suk;Lee, Ok-Min
    • ALGAE
    • /
    • v.22 no.2
    • /
    • pp.69-85
    • /
    • 2007
  • From six reservoirs in Gyeonggi-do, we have collected the distribution and standing crop of phytoplankton since Nov. 2005 through Sep. 2006. As a result, the phytoplankton appeared totally 340 taxa belong to 7 classes, 15 orders, 5 suborders, 32 families, 4 subfamilies, 84 genera, 283 species, 43 varieties, 9 forms and 5 unidentified species. The standing crop was shown as minimum was 0.3 × 106 cells and maximum was 5,950 × 106. The relation of standing crop with TN, TP and Chl-a showed as positive. Total 12 taxa including 2 taxa of blue-green algae occurred to every seasons at six lakes, and it was thought that they distributed in mesotrophic state. Also, Achnanthes minutissima, Aulacoseira granulata, Eudorina elegans, Gloeocystis ampla, Pandorina morum, Pediastrum simplex var. duodenarium, Scenedesmus ecornis were regarded as the indicators of eutrophic state. From the estimation of LTSI and TSI, it was shown that the rest of lakes except for Idong reservoir of winter were eutrophic states.

Removal of microcystin by chlorination (염소처리에 의한 Microcystin의 제거)

  • Lee, Tae-Gwan;Jin, Jung-Sook
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.321-326
    • /
    • 2002
  • On this study, removal method for microcystin, toxic substance released from the blue-green algae, using chloride was investigated. 82 ~ 98% of Microsystin were removed within 1 hr when sample had microsystin only. However, if the sample had algae cell removal efficiency was decreased to 50%, except the concentration of chloride $10Cl-mg/{\ell}$. As a result, intermediate-chlorination which dose chloride after coagulation process is considered the optimum method for the removal of microcystin because most of algae cell could remove during the coagulation process.

Effects of Heated Effluents on the Intertidal Macroalgal Community Near Gori Nuclear Power Plant (고리원전의 온배수 방출이 주변 해조군집에 미치는 영향)

  • Kim, Young-Hwan;Ahn, Jung-Kwan;Yoon, Hee-Dong;Jang, Min-A
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.297-304
    • /
    • 2007
  • This study is intended to clarify the effects of heated effluents on intertidal benthic marine algal community in Korea. The species composition and biomass of marine algae at the discharge canal of Gori nuclear power plant on the southeastern coast of Korea were investigated seasonally from February 2001 to October 2006. As a result, 54 species (7 blue-green, 12 green, 9 brown and 26 red algae) of marine algae were found at the discharge canal during the past six years. In general, the number of species observed was abundant during winter to spring and less in autumn. Enteromorpha compressa, E. intestinalis, E. prolifera and Caulacanthus ustulatus were common species found more than 80% frequency during the study period. Seasonal fluctuations of mean biomass were 1-440 g dry wt m–2 and dominant species in biomass were Enteromorpha spp. (contribution to a total biomass proportion 28%), Sargassum horneri (14%) and Amphiroa beauvoisii (14%). It is evident from the floristic composition and biomass data that unique micro-environment of the discharge canal support different communities from those on the intake or control area. Results from the large numbers of surveys before and during plant operation showed that, in the regions influenced by thermal effluents such as the discharge canal of power plants, the process of ecological succession has been proceeded. It is assumed that the uni-directional water flow and the time of overhaul largely affect the development and succession of benthic marine algal communities of the discharge canal.

Limnological Study on Spring-Bloom of a Green Algae, Eudorina elegans and Weirwater PulsedFlows in the Midstream (Seungchon Weir Pool) of the Yeongsan River, Korea (영산강 중류 (승촌보)의 봄철 녹조류 Eudorina elegans 대발생과 봇물 펄스방류에 대한 육수학적 고찰)

  • Shin, Jae-Ki;Kang, Bok-Gyoo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.320-333
    • /
    • 2016
  • This study was carried out to elucidate the development of unprecedented water-bloom caused by a single species of colonial green algae Eudorina elegans in the upstream area of the Seungchon weir located in the Yeongsan River from late April to May 2013. The Yeongsan River is typically regulated system and the waterbody is seriously enriched by both external and internal sources of nutrients. Seasonal algal outbreaks were highly probable due to various potential factors, such as the excessive nutrients contained in treated wastewater, slow current, high irradiation and temperature, in diatom (winter), green algae (spring) and bluegreen algae (summer). Spring green-tide was attributed to E. elegans with level up to $1,000mg\;m^{-3}$(>$50{\times}10^4cells\;mL^{-1}$). The bloom was exploded in the initial period of the algal development and after then gradually diminished with transporting to the downstream by the intermittent rainfall, resulting in rapid expansion of the distribution range. Although the pulsed-flows by the weir manipulation was applied to control algal bloom, they were not the countermeasures to solve the underlying problem, but rather there still was a remaining problem related to the impact of pulsed-flows on the downstream. The green-tide of E. elegans in this particular region of the Yeongsan River revealed the blooming characteristics of a colonial motile microalga, and fate of vanishing away by the succeeding episodic events of mesoscale rainfall. We believe that the results of the present study contribute to limno-ecological understanding of the green-tide caused by blue-green algae in the four major rivers, Korea.

Nutrients Removal of Municipal Wastewater and Lipid Extraction with Microalgae (조류를 이용한 하수고도처리 및 지질추출)

  • Park, Sangmin;Kim, Eunseok;Jheong, Weonhwa;Kim, Geunsu;Ahn, Kyunghee;Han, Jinseok;Kwon, Ohsang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.796-803
    • /
    • 2012
  • Potential feasibility of nutrients removal and biofuel production with microalgae was evaluated in batch culture. Distribution of microalgae in fresh water including reservoir and river was investigated to search for the species with high content of lipid that could converted into biofuel. Green algae, Chlorella and Scenedesmus sp., these are known as species containing high lipid content for biodiesel production, were observed in both summer and autumn season. However another highly lipid-containing species, botryococcus sp. was not observed in this study. In mixed culture of microalgae using synthesized wastewater medium, green algae were found to be dominant, comparing to other species of diatoms and blue-green algae. And microalgae were also capable of removing nitrogen and phosphorus in batch experiments. During the culture period of 14 days, removal efficiencies of nitrate and phosphorus were 30% and 82%, respectively. Furthermore, content of the intracellular lipid extracted from algae cell was as favorable as 12-30% in the mixed culture where Scenedesmus and Chlorella sp. were dominant. Therefore the mixed culture of microalgae could be applied to biofuel production and tertiary wastewater treatment, even though there are economic barriers to overcome.

Spatial and Temporal Variations of Environmental Factors and Phytoplankton Community in Andong Reservoir, Korea (안동호에서 환경요인과 식물플랑크톤의 시.공간적 변동)

  • Park, Jae-Chung;Park, Jung-Won;Kim, Jong-Dal;Shin, Jae-Ki
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.333-343
    • /
    • 2005
  • Spatial and temporal variations of environmental factors and phytoplankton community were investigated in the three stations of Andong Reservoir in 1997 and 2003. The changes of physico-chemical water quality and phytoplanktonic biomass were higher in 2003 than that of 1997, due to rainfall difference. The concentration of total nitrogen (TN) and total phosphorus (TP) in the reservoir decreased, but total nitrogen fell relatively more between them. TN/TP ratio decreased from 109 to 90 showing no change at the downstream but a big decrease at the midand upstream. Predominant phylum of phytoplankton in Andong Reservoir were six genus that composed to Anabaena, Aphanizomenon and Microcystis of Cyanophyceae, Cosmarium and Scenedesmus of Chlorophyceae and Synedra of Bacillariophyceae, respectively. Among the observed phytoplankton, diatom Synedra occured as the maximum amount of 3,400 cells mL$^{-1}$ even at the above 30°C. Green algae Scenedesmus observed along with Microcystis. It seemed to be compete with Microcystis during the high water temperature period. Although trophic state of Andong Reservoir was decreased, the standing crops of phytoplankton were increased. Moreover bluegreen algae, Aphanizomenon and Microcystis in the region of upstream to midstream and diatom, Synedra in the region of midstream to downstream were increased until to reach the algal bloom, respectively. It seemed necessary to attention the changes of blue-green algae Aphanizomenon, that has an ability of nitrogen fixation.