• Title/Summary/Keyword: Blue light-emitting

Search Result 641, Processing Time 0.028 seconds

Emission Characteristics of White PHOLEDs with Different Emitting Layer Structures (발광층 구조에 따른 백색 인광 OLED의 발광 특성)

  • Seo, Jung-Hyun;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.456-461
    • /
    • 2012
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with red/blue, blue/red and red/blue/red emitting layer (EML) structures were fabricated using a host-dopant system. In case of white PHOLEDs with red/blue structure, the best efficiency was obtained at a structure of red (15 nm)/blue (15 nm). But the emission color was blue-shifted white. In case of white PHOLEDs with blue/red structure, the better color purity and efficiency were observed at a blue (29 nm)/red (1 nm) structure. For additional improvement of color purity in white PHOLEDs with blue (29 nm)/red (1 nm) EMLs, we fabricated white PHOLEDs with red (1 nm)/blue (28 nm)/red (1 nm) structure. The current efficiency, external quantum efficiency, and CIE (x, y) coordinate were 27.2 cd/A, 15.1%, and (0.382, 0.369) at 1,000 $cd/m^2$, respectively.

Synthesis and Application of the Novel Azomethine Metal Complexes for the Organic Electroluminescent Devices

  • Kim, Seong Min;Kim, Jin Sun;Sin, Dong Myeong;Kim, Yeong Gwan;Ha, Yun Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.743-747
    • /
    • 2001
  • New azomethine metal complexes were synthesized systematically and characterized. Beryllium, magnesium, or zinc ions were used as a central metal cation and aromatic azomethines (L1-L4) were employed as a chelating anionic ligand. Emission peaks o f the complexes in both solution and solid states were observed mostly at the region of 400-500 nm in the luminescence spectra, where blue light was emitted. Three of them (BeL1 (Ⅰ), ZnL2 (Ⅱ), and ZnL3 (Ⅲ)) were sublimable and thus were applied to the organic light-emitting devices (OLED) as an emitting layer, respectively. The device including the emitting layer of Ⅰ exhibited white emission with the broad luminescence spectral range. The device with the emitting layer of Ⅱ showed blue luminescence with the maximum emission peak at 460 nm. Their ionization potentials, electron affinities, and electrochemical band gaps were investigated with cyclic voltammetry. The electrochemical gaps of 2.98 for I, 2.70 for Ⅱ, and 2.63 eV for Ⅲ were found to be consistent with their respective optical band gaps of 3.01, 2.95 and 2.61 eV within an experimental error. The structure of OLED manufactured in this study reveals that these complexes can work as electron transporting materials as well.

Fluorescent Blue Materials for Efficient Organic Light-Emitting Diode with High Color Purity

  • Choi, Kyung-Sun;Lee, Chan-Hyo;Lee, Kwan-Hee;Park, Su-Jin;Son, Seung-Uk;Chung, Young-Keun;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1549-1552
    • /
    • 2006
  • We report a new series of blue dopants composed of both electron donating and electron accepting moieties in one molecule, based on nalidixic acid. The EL device derived from the dopant exhibits pure blue light emission (0.15, 0.14) The current efficiency is estimated to be 3.88 cd/A at 100 $cd/m^2$, which shows remarkable enhancement, compared to that of the host itself (2.5 cd/A at 100 $cd/m^2$) under the same conditions. These results demonstrate that the incorporation of a proper guest into the host in a guest-host doped system improves not only the purity of the fluorescent blue emission but also elevates its quantum efficiency, thus improving the OLED performance.

Emission Characteristics of White Organic Light-Emitting Diodes Using Ultra Wide Band-gap Phosphorescent Material (Ultra Wide Band-gap 인광체를 이용한 백색 OLED의 발광 특성)

  • Chun, Hyun-Dong;Na, Hyunseok;Choo, Dong Chul;Kang, Eu-Seok;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.910-915
    • /
    • 2012
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. The best blue emitting OLED and red emitting OLED characteristics were obtained at a concentration of 12 vol.% FIrpic and 1 vol.% $Bt_2Ir$(acac) in UGH3, respectively. And the optimum thickness of the total emitting layer was 25 nm. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with red/blue/red, blue/red, red/blue and co-doping emitting layer structures were fabricated using a host-dopant system. In case of white PHOLEDs with co-doping structure, the best efficiency was obtained at a structure UGH3: 12 vol. % FIrpic: 1 vol.% $Bt_2Ir$(acac) (25 nm). The maximum brightness, current efficiency, power efficiency, external quantum efficiency, and CIE (x, y) coordinate were 13,430 $cd/m^2$, 40.5 cd/A, 25.3 lm/W, 17 % and (0.49, 0.47) at 1,000 $cd/m^2$, respectively.

The Investigation of Photolithographic Patterning Method for Polymer Light Emitting Diodes (PLEDs) (고분자 전기 발광 다이오드(PLEDs)를 위한 포토리소그라피 패터닝 방법에 관한 연구)

  • Kim, Mi-Kyung;Lee, Jeong-Ik;Kim, Duck-Il;Hwang, Chi-Sun;Yang, Yong-Suk;Oh, Ji-Young;KoPark, Sang-He;Chu, Hye-Yong;Kim, Suk-Kyung;Hwang, Do-Hoon;Lee, Hyung-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.106-108
    • /
    • 2004
  • We have investigated the photolithographic patterning method of light emitting polymer film for polymer light emitting diodes (PLED). Blue light emitting polymers based on polyfluorene, which can be cured photochemically to yield an insoluble form, have been synthesized using Ni(0) mediated Yamamoto polymerization. The relationship between patterning property and several variables such as the intensity of the exposed UV light, the concentrations of additives, has been studied by using optical microscope analysis, UV/visible spectroscopy, and photoluminescence. We have successfully fabricated PLEDs composed of the patterned emissive layer and their electroluminescence property has been also investigated. In this presentation, the detailed photolithographic patterning method and its application for polymer light emitting display will be discussed.

  • PDF

Effect of Light Emitting Diode on Growth and Flowering of Oriental Melon (Cucumis melo L. var makuwa Makino)

  • Shin, Y.S.;Lim, Y.S.;Lee, M.J.;Han, Y.Y.;Park, S.D.;Chae, J.H.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.203-205
    • /
    • 2011
  • Investigation on oriental melon was carried out for 30 minutes starting at 7 PM every day from March 21 to May 24 to find out the effect of light emitting diode on seedling quality, grafting, growth and flowering of oriental melon. According to the result of the investigation, plant height was longer in Blue, Infrared, Red+Blue and Red treatment and leaf number was higher in Blue, Red+Blue and Infrared treatment than those of control. No big difference was identified between control and Yellow, Green, Ultraviolet treatments. Grafting rate was high in Green, Red+Blue and Green treatment. The number of flower every week in control was nine, the number was almost 1 higher in White and Ultraviolet A treatments, but it was 1 to 4 lower in the rest of treatments. The number of female flowers of control was 10, however, it was 21 in Infrared treatment, 17 in White, 15 in Ultraviolet, 13 in Red+lnfrared, 12 in Blue and Red+Blue, 11 in Yellow and 8 in Green.

Three White Organic Light-emitting Diodes with Blue-green Fluorescent and Red Phosphorescent Dyes

  • Galbadrakha, Ragchaa;Bang, Hwan-Seok;Baek, Heume-Il;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.9 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • This paper reports that well-balanced white emission with three primary colors can be achieved with a simple white organic light-emitting diode (WOLED) structure of ITO / $\alpha$-NPD (50 nm) / $\alpha$-NPD: Btp2Ir(acac) (8 wt%, 6 nm) / $\alpha$-NPD (5 nm) / BCP (3 nm) / $Alq_3$: C545T (0.5 wt%, 10 nm) / $Alq_3$ (40 nm) / LiF (0.5 nm) / Al (100 nm). The external quantum efficiency of the device reached 3.8% at a current density (luminance) of 4.6 mA/$cm^2$ (310 cd/$m^2$), and the maximal luminance of the device reached 19,000 cd/$m^2$ at 11.5 V. The insignificant blue shift of the emitting color with an increasing current density can be attributed to the narrowing of the exciton formation zone width.

Effects of LED Light Quality of Urban Agricultural Plant Factories on the Growth of Daughter Plants of 'Seolhyang' Strawberry

  • Lee, Kook-Han
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.821-829
    • /
    • 2018
  • This study was conducted to examine the influence of Light-Emitting Diode (LED) light quality in urban agricultural plant factories on the growth and development of Seolhyang strawberry daughter plants in order to improve the efficiency of daughter plant growth and urban agriculture. LED light quality by demonstrated that above-ground growth and development were greatest for daughter plant 2. Daughter plant 1 showed the next highest growth and development, followed by daughter plant 3. Among the different qualities of LED light, the stem was thickest and growth rate of leaves was highest for R + B III (LED quality: red 660 nm + blue 450 nm/photosynthetic photon flux density (PPFD): $241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R (red $660nm/115-117{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). Plant height, leaf width, petiole length, and the leaf growth rate were highest for W (white fluorescent lamp/$241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R + B I (red 660nm+blue 450nm/$80-82{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). For above-ground growth and development, as the plants surpassed the seedling age, mixed light (red + blue), rather than monochromatic light (red or blue), and higher PPFD values tended to increase development. Regarding the quality of the LED light, daughter plant 2 showed the highest chlorophyll content, followed by daughter plant 1, and daughter plant 3 showed the least chlorophyll content. When the wavelength was monochromatic, chlorophyll content increased, compared to that when PPFD values were increased. Mixed light vitality was highest in daughter plant 2, followed by 1, and 3, showed increased photosynthesis when PPFD values were high with mixed light, in contrast to the results observed for chlorophyll content.

Screening and identification of bioorganic light-emitting substances from marine macrophytes

  • Jung, Sang Mok;Lee, Han Seong;Lee, Han Joo;Kang, Seul Gi;Son, Ji Su;Jeon, Jae Hyuk;Chae, Hee Baik;Shin, Hyun Woung
    • ALGAE
    • /
    • v.30 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Organic light-emitting materials in marine macrophytes from various coastal environments were identified. Twentyeight species from the solvent fractions were examined and identified as candidates for bioorganic light-emitting materials using photoluminescence (PL) spectra and gas chromatography-mass spectrometry. We selected 16 solvent fractions from a total of 1,221 prepared from Ishige okamurae, Sargassum confusum, Grateloupia elliptica, Chondracanthus intermedius, Porphyra yezoensis, Meristotheca papulosa, Gelidium amansii, and Scytosiphon lomentaria. The maximum light-emitting PL spectra appeared at various colors, mainly between blue and green, based on chromaticity coordinates, from solvent fractions of M. papulosa, G. amansii, G. elliptica, P. yezoensis, S. lomentaria, I. okamurae, and C. intermedius. These results will contribute to the development of novel organic light-emitting materials.

A Study on the Luminous Properties of the White-light-emitting Organic LED with Two-wavelength using DPVBi/Alg3:Rubrene Structure (DPVBi/Alg3:Rubrene 구조를 사용한 2-파장 방식의 백색유기발광소자의 발광특성에 관한 연구)

  • 조재영;최성진;윤석범;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.616-621
    • /
    • 2003
  • The white-light-emitting organic LED with two-wavelength was fabricated using blue emitting material(DPVBi) and a series of orange color fluorescent dye(Rubrene) by vacuum evaporation processes. The basic structure of white-light-emitting OLED was ITO/NPB(150$\AA$)/DPVBi(150$\AA$)/Alq$_3$:Rubrene(150$\AA$)/BCP(100$\AA$)/Alq$_3$(150$\AA$)/Al(600$\AA$). The changes of the CIE coordiante strongly depended on the doping concentration of Rubrene and the thickness of NPB layer. We obtained the white-light-emitting OLED close to the pure white color light and the CIE coordinate of the device was (0.315, 0.330) at applied voltage of 13V when the doping concentration of Rubrene was 0.5wt% and the thickness of NPB layer is 200$\AA$. At a current of 100mA/$\textrm{cm}^2$, the quantum efficiency was 0.35%.