• Title/Summary/Keyword: Blue light LED

Search Result 454, Processing Time 0.033 seconds

Effect of Light-emitting Diodes (LEDs) and Ventilation on the in vitro Shoot Growth of Eucalyptus pellita (Eucalyptus pellita의 기내(器內) 줄기생장에 미치는 LEDs (Light-emitting diodes) 및 환기처리(換氣處理) 효과)

  • Kim, Ji-Ah;Moon, Heung Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.716-722
    • /
    • 2006
  • Various light sources including LEDs (Light emitting diodes) affecting on shoot growth was examined using in vitro shoots of E. pellita. Generally, it appeared that ventilation treatment was the most important factor affecting on normal shoot growth, irrespective of irradiation sources. Ventilation resulted in better performance of the cultures under 100% blue LED radiation. These include better shoot growth, more number of leaves, more number of internodes, more number of axillary buds, and heavier dry matters. The highest total chlorophyll content was obtained under both cool-white fluorescent lamps and R5B5 (50% red LED + 50% blue LED). The value was $24.5{\mu}g/g$ and $20.1{\mu}g/g$, respectively. In addition, ventilation resulted in higher carotenoid content in all irradiation sources except 100% red LED radiation. In conclusion, shoot growth of E. pellita could be reached maximum by ventilation under R5B5 (50% red LED + 50% blue LED).

The effect of RGB LED lights on oyster mushroom (Pleurotus spp.) fruit-body characteristics (RGB LED 광원이 느타리류의 자실체 특성에 미치는 효과)

  • Jae-San Ryu;KyeongSook Na;Jeong-Han Kim;Jeong Woo Lee;Hee-Min Gwon
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.132-139
    • /
    • 2023
  • Light plays an important role in fruit-body development and morphology during Pleurotus spp. cultivation. To understand the effects of light color on fruit-body properties, we evaluated the fruit-body characteristics of Pleurotus spp. Varieties cultivated under blue, red, and purple LED light sources. The main results are as follows: The overall fruit-body shape showed differences depending on the color of the LED light. The fruit-bodies of mushroom cultivated under blue and purple light were generally similar to the mushroom shapes typically produced, while those of mushroom cultivated under green light were abnormally shaped, probably due to the absence of effective light source. The average cap lightness of mushrooms cultivated under blue, green, and purple LED lights was 57.0, 57.4, and 59.4, respectively. The average cap lightness of all varieties except Wonhyeong1ho and Hwang-geumsantari cultivated under the three LED light sources were statistically significantly different (P<0.05). The cap redness varied significantly depending on the LED lighting and variety. Only Gonji7hoM, the cap color mutant of Gonji7ho, showed negative cap redness values under all three LED light sources. Among the eight varieties excluding Gonji7ho, the highest cap redness was observed when cultivated under the blue LED. The average harvest weight of the varieties cultivated under purple, blue, and green LED light were 68.0, 58.3, and 50.1 g, respectively. The yield of Gonji7ho, the mushroom variety with the highest yield, cultivated under blue, green, and purple LED light were 92.8, 77.1, and 98.6 g, respectively. The earliness when grown under the purple, blue, and green LED lights were 5.3, 5.8, and 5.8 days, respectively. Among the varieties, six, three, and two cultivars showed the shortest earliness under the purple, green, and blue LED, respectively. The fruit-body lengths were 66.4, 51.8, and 46.8 mm when cultivated under green, purple, and blue lights, respectively. These results are expected to serve as a foundation for producing mushrooms with traits demanded in the market.

Fruit Qualities of De-astringent Persimmon 'Fuyu' Affected by Various Light Sources under Low and High Temperatures before Storage of Harvested Fruit

  • Kim, Tae-Choon;Kim, Chul Min;Kim, Ho Cheol
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.260-267
    • /
    • 2019
  • Harvested de-astringent persimmon 'Fuyu' were treated with various lighting sources under low (3℃) and high (22℃) temperatures. The weight loss rate of fruits was lower in those with Red LED than Fluorescence and Blue LED under both temperature conditions. Hardness and soluble solid content of fruits were higher in those with 3℃ / Blue LED or mixed LED (Blue+Red LEDs). Beta-carotene and lycopene content of fruit peel were higher in those with 3℃ than 22℃ and with Red LED or light sources with mixed red wavelength under both temperatures. When the fruits treated with light and temperature were stored for 4 days under 3℃ / dark condition, the hardness of the fruits did not significant difference among the treatments. Taken together all the results, it would be best to treat it light sources mixed red wavelength under 3℃.

Spectral Irradiance and Underwater Transmission Characteristics of a Combined High-Luminance Light-Emitting Diodes as the Light Source for Fishing Lamps (복수 조합에 의한 고휘도 발광 다이오드의 분광분포와 수중투과특성)

  • Choi, Sok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.703-710
    • /
    • 2009
  • The spectral irradiance and underwater transmission characteristics of a combined high-luminance light-emitting diode (LED) lights have been studied to evaluate suitable light sources for fishing lamps of the next generation. The wavelengths at which the irradiance was maximum were changed from 473, 501, 525, and 465 nm for blue, peacock blue, green, and white LED light to 475, 504 and 528 nm for [$F_{WB}$], [$F_{PB}$] and [$F_{GB}$] combined LED lights, respectively. If the irradiance characteristics at 400-700 nm wavelengths are set as 100%, the irradiance rates at 450-499 nm and 500-549 nm were decreased from 82.4% and 56% for blue, peacock blue LED light to 60.0%, 38.5% for [$F_{WB}$], [$F_{WP}$] combined LED lights. The underwater transmission characteristics of the combined LED lights were superior in the order [$F_{WB}$], [$F_{BP}$], [$F_{GB}$] in optical water type I; [$F_{WB}$], [$F_{PB}$], [$F_{GP}$] in optical water type II-III; and [$F_{GP}$], [$F_{WP}$], [$F_{PB}$] in optical water type 1. Setting the 10m depth underwater transmission characteristics of the combined LED lights in optical water type I at 100%, the transmission of water types II, III and 1 drops to 29.5%, 8.0% and 2.2%. Based on the distribution of spectral irradiance and underwater transmission characteristics calculated in optical water types II-III, where was the jigging ground for fishing lamps, the [$F_{WB}]$ and [$F_{GP}$] combined LED lights can be used as a suitable light sources for fishing lamps of the next generation.

Effect of Blue and Red LED irradiation on Growth Characteristics and Saponin Contents in Panax Ginseng C. A. Meyer (청색과 적색 LED 처리가 인삼의 생육 및 사포닌 함량에 미치는 영향)

  • Kim, Min-Jeong;Li, Xiangguo;Han, Jin-Soo;Lee, Seong-Eun;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.187-191
    • /
    • 2009
  • This study was conducted to assess the response of LED (Light-emitting diode) irradiation on the growth characteristics and saponin contents of Panax ginseng C. A. Meyer. LED irradiation showed a positive effect for most of the parameters studied. The content of chlorophyll a in leaves was increased by 4.9$\sim$36.5%, under LED and fluorescent light conditions compared to the control. The content of chlorophyll b was also increased by 44.4$\sim$55.6% under blue and red LED compared to the control except under the red plus blue LED condition. The shoot and root weight were increased by $20\sim60%$ and $14.8\sim59.3%$, respectively under LED and fluorescent light conditions compared to the control. The total saponin content was increased by 1.8% under blue LED compared to the control, while total saponin content was decreased by 8.8$\sim$11.5% under red LED, red plus blue LED and fluorescent light conditions.

Effects of LED Light Quality of Urban Agricultural Plant Factories on the Growth of Daughter Plants of 'Seolhyang' Strawberry

  • Lee, Kook-Han
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.821-829
    • /
    • 2018
  • This study was conducted to examine the influence of Light-Emitting Diode (LED) light quality in urban agricultural plant factories on the growth and development of Seolhyang strawberry daughter plants in order to improve the efficiency of daughter plant growth and urban agriculture. LED light quality by demonstrated that above-ground growth and development were greatest for daughter plant 2. Daughter plant 1 showed the next highest growth and development, followed by daughter plant 3. Among the different qualities of LED light, the stem was thickest and growth rate of leaves was highest for R + B III (LED quality: red 660 nm + blue 450 nm/photosynthetic photon flux density (PPFD): $241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R (red $660nm/115-117{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). Plant height, leaf width, petiole length, and the leaf growth rate were highest for W (white fluorescent lamp/$241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R + B I (red 660nm+blue 450nm/$80-82{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). For above-ground growth and development, as the plants surpassed the seedling age, mixed light (red + blue), rather than monochromatic light (red or blue), and higher PPFD values tended to increase development. Regarding the quality of the LED light, daughter plant 2 showed the highest chlorophyll content, followed by daughter plant 1, and daughter plant 3 showed the least chlorophyll content. When the wavelength was monochromatic, chlorophyll content increased, compared to that when PPFD values were increased. Mixed light vitality was highest in daughter plant 2, followed by 1, and 3, showed increased photosynthesis when PPFD values were high with mixed light, in contrast to the results observed for chlorophyll content.

Effects of the Spectral Quality and Intensity of Light-Emitting Diodes on Growth and Biochemical Composition of Chlorella vulgaris (발광다이오드 광량 및 파장에 따른 Chlorella vulgaris의 생장 및 생화학적 조성 변화 연구)

  • Ji Seung Han;Peijin Li;Tae-Jin Choi;Seok Jin Oh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.878-888
    • /
    • 2023
  • Growth responses of Chlorella vulgaris exposed to different light intensities and wavelengths of light-emitting diodes (LEDs) were investigated. C. vulgaris was cultured under red LED (650 nm), blue LED (450 nm), green LED (520 nm), and fluorescent lamps (three wavelengths, control). The maximum growth rates (µmax) of C. vulgaris were highest under the blue LED, followed by the red LED, green LED, and fluorescent lamps. The low compensation photon flux density (I0) and low half-saturation constants (Ks) were observed in C. vulgaris cultured under the red LED, indicating that high C. vulgaris growth is closely related to the low light intensity of the red LED suggesting that the red LED can be useful for the biomass production of C. vulgaris. Furthermore, it was observed that under the blue LED during the stationary phase, there was an increase in useful bioactive substances, such as proteins and lipids, which are beneficial for biomass production. In conclusion, the red LED is an economical light source that can enhance cell density, and the blue LED is effective in promoting valuable intracellular substances.

Wide Color Gamut Backlight from Three-band White LED

  • Kim, Il-Ku;Chung, Kil-Yoan
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.67-70
    • /
    • 2007
  • A Wide Color Gamut Backlight system was studied using a three-band white Light-Emitting Diode. A three-band white light-emitting diode (LED) was fabricated using an InGaN-based blue LED chip that emits 445-nm blue peak, and a green phosphor and red phosphor that emit 535-nm green and 621-nm red peak emissions, respectively, when excited by 450-nm blue light. Using for this three-band white LED, wide color gamut backlight unit (BLU) was attained. The luminance of BLU and CIE 1931 chromaticity coordinates was $1,700Cd/m^2$ and (0.337, 0.346). Color filter matching simulations for this configuration show that the three-band white LED backlight can be enhanced by up to 16% over conventional white LED backlight color gamut.

Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes

  • Ryu, Guen-Hwan;Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2015
  • We investigate the temperature dependence of the phosphor conversion efficiency (PCE) of the phosphor material used in a white light-emitting diode (LED) consisting of a blue LED chip and yellow phosphor. The temperature dependence of the wall-plug efficiency (WPE) of the blue LED chip and the PCE of phosphor are separately determined by analyzing the measured spectrum of the white LED sample. As the ambient temperature increases from 20 to $80^{\circ}C$, WPE and PCE decrease by about 4.5% and 6%, respectively, which means that the contribution of the phosphor to the thermal characteristics of white LEDs can be more important than that of the blue LED chip. When PCE is decomposed into the Stokes-shift efficiency and the phosphor quantum efficiency (QE), it is found that the Stokes-shift efficiency is only weakly dependent on temperature, while the QE decreases rapidly with temperature. From 20 to $80^{\circ}C$ the phosphor QE decreases by about 7% while the Stokes-shift efficiency changes by less than 1%.

Characteristics of Spectral Irradiance Based on the Distance from the Light Source and Operating Method for Fishing Lamps with a Combined Light Source (이종(異種) 광원 조합에 의한 복수 광원의 분광 방사특성과 광달(光達) 거리 및 집어등 운용방법)

  • Choi, Sok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.711-720
    • /
    • 2009
  • Characteristics of spectral irradiance based on the distance from the light source, which combined metal halide lamp and high-luminance light-emitting diode (LED) light, were studied to investigate a suitable operating method for fishing lamps of the next generation. A 380-780 nm wavelength radiation was superior when using 1 W electrical power in the order of metal halide lamp, blue LED, white LED, and combined LED lights. The wavelengths at which the irradiance was at a maximum were fixed to 581 nm for the light source, which was combined for each ratio. If the irradiance characteristics at 300-1100 nm wavelengths were set as 100%, the irradiance rates at 400-599 nm were 100%, 72.7%, 88.9%, and 69.5% for the blue, white, combined LED lights, and metal halide lamp, respectively. This indicated that the color rendering of the LED lights was dependent on the metal halide lamp light source. When the horizontal profiles (450-550 nm wavelength) of irradiances were compared to a different type of light source in the ratio white LED: combined LED lights: blue LED: metal halide lamp, the irradiated area of more than $0.01\;{\mu}mol/s/m^2/nm$ was in the ratio 1.0 : 1.3 : 1.7 : 37.3, respectively. Based on the radiation characteristics and irradiance according to the distance from the light source, LED lights have an estimated economic efficiency if used before and after operation of a metal halide lamp.