• 제목/요약/키워드: Blue light LED

검색결과 455건 처리시간 0.024초

집어등 광원으로서 고휘도 발광 다이오우드의 방사 및 수중투과 특성 (Radiation and Underwater Transmission Characteristics of a High-luminance Light-emitting Diode as the Light Source for Fishing Lamps)

  • 최석진
    • 한국수산과학회지
    • /
    • 제39권6호
    • /
    • pp.480-486
    • /
    • 2006
  • The radiation characteristics of a high-luminance light-emitting diode (LED) light source were studied to evaluate its potential as an energy-saving light source for fishing lamps. The angle of the LED light source with 50% illuminance was $8-15^{\circ}$, and it had strong directional characteristics. The wavelengths at which the radiance and irradiance were maxima were 709, 613, 473, 501, 525, and 465 nm for red, orange, blue, peacock blue, green, and white light, respectively. The underwater transmission characteristics of the LED light source were superior in the order blue, white, peacock blue, and green in optical water type I: blue, peacock blue, white, and green in optical water type II; and blue, peacock blue, green, and white in optical water type III. Setting the underwater transmission characteristics of the LED light source in optical water type I at 100%, the transmission of water types II and III decreased to 67 and 17%, respectively. Based on the underwater transmission characteristics calculated in optical water types I-III, the blue and peacock blue LED light sources can be used as an energy-saving light source for fishing lamps.

LED 조명에 대한 청색광 위험 평가 (Evaluation of Blue Light Hazards in LED Lightings)

  • 정명훈;양석준;육주성;오상영;김창진;류정묵;최은정
    • 한국안광학회지
    • /
    • 제20권3호
    • /
    • pp.293-300
    • /
    • 2015
  • 목적: 청색광 위험도의 정량적 지표인 청색광 복사휘도를 이용하여 안경원 내 LED 조명에 대한 청색광 위험도를 평가하였다. 방법: LED 조명의 분광복사휘도를 측정하고 청색광 복사휘도와 최대노출시간을 산출한 후, IEC 62471 분류기준에 따라 위험군을 분류하였다. 결과: 진열장에 사용된 황색 LED 조명, 천장에 사용된 백색 및 황색 LED 조명, 그리고 로고에 사용된 백색 LED 조명은 위험제외군 RG0로 분류되었지만, 진열장에 사용된 백색 LED 조명은 위험군 RG1으로 분류되었다. 진열장에 사용된 백색 LED 조명의 청색광 복사휘도는 형광등에 비하여 수십 배나 높은 것으로 나타났다. 결론: 청색광 복사휘도의 값을 이용하여 여러 가지 조명에 대한 청색광 위험을 정량적으로 표현할 수 있었다. 진열장용 백색 LED 조명은 높은 휘도와 색온도로 청색광 위험이 높음을 확인할 수 있었으며, 안경원 내의 조명 교체 시 장기적이 측면에서 시건강을 위해 적절한 밝기와 색온도의 조명을 선택하는 것이 필요하겠다.

암면큐브를 이용한 육묘에서 LED 광질에 따른 파프리카 묘의 생육 특성 (Growth Characteristics of Paprika Seedlings Affected by Different LED Light Qualities Raising Seedlings Using Rockwool Cube)

  • 이세형;고바울;배종향;구양규;김호철
    • 생물환경조절학회지
    • /
    • 제31권1호
    • /
    • pp.60-66
    • /
    • 2022
  • 본 연구는 파프리카 육묘 시 다양한 LED 광질(red:blue = 10:0, 8:2, 2:8, white)에 따른 생육변화에 대하여 구명하여 수경재배용 묘 생산을 위한 전용육묘장의 기반기술로 활용하고자 수행하였다. 초장과 줄기직경의 생육은 red 비율이 높을수록 유의하게 길거나 굵었고, 엽면적은 LED red:blue = 8:2에서 가장 넓었다. 건물 중량도 엽면적과 동일한 경향이었다. LED white에서는 모든 묘의 소질에서 다른 처리들보다 뚜렷하게 저조하였다. 상대생장률은 red 비율이 높을수록 높은 경향을 나타내었고 순동화율은 blue 비율이 높을수록 높은 경향을 나타내었다. 따라서 본 시험에서 LED를 활용한 파프리카 육묘 시 초장, 엽면적, 단위엽면적당 건물생산능력 등을 고려하였을 때 혼합광을 이용하는 것이 적합하고 특히, LED red:blue = 8:2가 가장 적합한 것으로 생각된다. 그리고 red와 blue 파장의 적절한 혼합 비율을 통해 파프리카 묘의 초장 및 절간장을 제어할 수 있을 것으로 생각된다.

식물 재배기의 효율적인 LED 조명 시스템 설계 (Efficient LED lighting system design of the plant growing system)

  • 안교명;홍영진;김환용
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7256-7261
    • /
    • 2015
  • 본 논문은 식물 재배시스템을 제작하고 LED 광원은 단색광 3개(적색, 청색, 백색), 혼합광 3개(적색1+청색1, 적색2+청색1, 적색1+청색2)를 제작하여 사용하였다. 제작한 식물 재배시스템을 이용하여 LED 광원별 광 특성, 광량의 변화에 따른 조도 및 PPFD의 특성과 식물성장을 분석하였다. 분석결과 LED 광원의 광 효율은 백색 광원이 125 lm/W로 높으며 적색1+청색2 광원은 9.9 lm/W로 낮았다. 이러한 결과로 단색광이 혼합광 보다 광효율이 좋은 것을 확인 할 수 있었다. LED의 파장별 PPFD ($25{\mu}mol$, $50{\mu}mol$, $100{\mu}mol$) 조도값 크기는 백색 LED가 높으며 청색 LED가 낮았다. 따라서 LED 광원의 다양한 단색 혼합광 파장대역 조합에 따라 식물성장에 적합한 효율적인 LED 조명 시스템을 구성할 수 있다.

Effects of Sources and Quality of LED Light on Response of Lycium chinense of Photosynthetic Rate, Transpiration Rate, and Water Use Efficiency in the Smart Farm

  • Lee, Seungyeon;Hong, Yongsik;Lee, Eungpill;Han, Youngsub;Kim, Euijoo;Park, Jaehoon;Lee, Sooin;Jung, Youngho;You, Younghan
    • 생태와환경
    • /
    • 제52권2호
    • /
    • pp.171-177
    • /
    • 2019
  • Smart farm is a breakthrough technology that can maximize crop productivity and economy through efficient utilization of space regardless of external environmental factors. This study was conducted to investigate the optimal growth and physiological conditions of Chinese matrimony vine (Lycium chinense) with LED light sources in a smart farm. The light source was composed of red+blue and red+blue+white mixed light using a LED system. In the red+blue mixed light, red and blue colored LEDs were mixed at ratios of 1:1, 2:1, 5:1, and 10:1, with duty ratios varied to 100%, 99%, and 97%. The experimental results showed that the photosynthetic rate according to the types of light sources did not show statistically significant differences. Meanwhile, the photosynthetic rate according to the mixed ratio of the red and the blue light was highest with the red light and blue LED ratio of 1:1 while the water use efficiency was highest with the red and blue LED ratio of 2:1. The photosynthetic rate according to duty ratio was highest with the duty ratio of 99% under the mixed light condition of red+blue+white whereas the water use efficiency was highest with the duty ratio of 97% under the mixed light of red+blue LED. The results indicate that the light source and light quality for the optimal growth of Lycium chinense in the smart farm using the LED system are the mixed light of red+blue (1:1) and the duty ratio of 97%.

Analysis on the Luminous Efficiency of Phosphor-Conversion White Light-Emitting Diode

  • Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.22-26
    • /
    • 2013
  • The author analyzes the luminous efficiency of the phosphor-conversion white light-emitting diode (LED) that consists of a blue LED chip and a yellow phosphor. A theoretical model is derived to find the relation between luminous efficiency (LE) of a white LED, wall-plug efficiency (WPE) of a blue LED chip, and the phosphor absorption ratio of blue light. The presented model enables to obtain the theoretical limit of LE and the lower bound of WPE. When the efficiency model is applied to the measured results of a phosphor-conversion white LED, the limit theoretical value of LE is obtained to be 261 lm/W. In addition, for LE of 88 lm/W at 350 mA, the lower bound of WPE in the blue LED chip is found to be ~34%. The phosphor absorption ratio of blue light was found to have an important role in optimizing the luminous efficiency and colorimetric properties of phosphor-conversion white LEDs.

고휘도 발광다이오우드와 집어등 광원의 방사특성 및 단위 전력당 방사량 비교 (Comparison of Radiation Characteristics and Radiant Quantities per unit Electrical Power between High Luminance Light Emitting Diode and Fishing Lamp light Source)

  • 최석진
    • 한국수산과학회지
    • /
    • 제41권6호
    • /
    • pp.511-517
    • /
    • 2008
  • The radiation characteristics and economic efficiency of high - luminance light - emitting diodes (LEDs), a metal halide lamp, and a halogen lamp were studied to evaluate their potential as an energy-saving light source for fishing lamps. The wavelengths at which irradiance was maximum were 709, 613, 473, 501, 525, 465, 578, and 973 nm for red, orange, blue, peacock blue, green, and white LEDs, the metal halide lamp, and the halogen lamp, respectively. If the irradiance characteristics at 300-1,100 nm wavelengths are set as 100%, the irradiance rates at 381-780 nm were 99-78%, 82%, and 24% for the LEDs, metal halide lamp, and halogen lamp, respectively. The economic efficiency was superior in the order metal halide lamp, halogen lamp, peacock blue LED, and blue LED at 381-780 nm and metal halide lamp, peacock blue LED, blue LED, and halogen lamp at 480-520 nm. Based on the radiation characteristics and economic efficiency evaluated at 480-520 nm, the blue and peacock blue LED light sources can be used as energy-saving light sources for fishing lamps.

Utilization Efficiencies of Electric Energy and Photosynthetically Active Radiation of Lettuce Grown under Red LED, Blue LED and Fluorescent Lamps with Different Photoperiods

  • Lee, Hye In;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • 제38권4호
    • /
    • pp.279-286
    • /
    • 2013
  • Purpose: This study was conducted to analyze the utilization efficiencies of electric energy and photosynthetically active radiation of lettuce grown under red LED, blue LED and fluorescent lamps with different photoperiods. Methods: Red LED with peak wavelength of 660 nm and blue LED with peak wavelength of 450 nm were used to analyze the effect of three levels of photoperiod (12/12 h, 16/8 h, 20/4 h) of LED illumination on light utilization efficiency of lettuce grown hydroponically in a closed plant production system (CPPS). Cool-white fluorescent lamps (FL) were used as the control. Photosynthetic photon flux, air temperature and relative humidity in CPPS were maintained at 230 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $22/18^{\circ}C$ (light/darkness), and 70%, respectively. Electric conductivity and pH were controlled at 1.5-1.8 $dS{\cdot}m^{-1}$ and 5.5-6.0, respectively. The light utilization efficiency based on the chemical energy converted by photosynthesis, the accumulated electric energy consumed by artificial lighting sources, and the accumulated photosynthetically active radiation illuminated from artificial lighting sources were calculated. Results: As compared to the control, we found that the accumulated electric energy consumption decreased by 75.6% for red LED and by 70.7% for blue LED. The accumulated photosynthetically active radiation illuminated from red LED and blue LED decreased by 43.8% and 33.5%, respectively, compared with the control. The electric energy utilization efficiency (EEUE) of lettuce at growth stage 2 was 1.29-2.06% for red LED, 0.76-1.53% for blue LED, and 0.25-0.41% for FL. The photosynthetically active radiation utilization efficiency (PARUE) of lettuce was 6.25-9.95% for red LED, 3.75-7.49% for blue LED, and 2.77-4.62% for FL. EEUE and PARUE significantly increased with the increasing light period. Conclusions: From these results, illumination time of 16-20 h in a day was proposed to improve the light utilization efficiency of lettuce grown in a plant factory.

Deep Blue LED 광원과 형광체를 이용한 초고연색 백색 인공태양광 LED 소자의 개발 (Development & Reliability Verification of Ultra-high Color Rendering White Artificial Sunlight LED Device using Deep Blue LED Light Source and Phosphor)

  • 안종욱;권대규
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.59-68
    • /
    • 2023
  • Currently, yellow phosphor of Y3Al5O12:Ce3+ (YAG:Ce) fluorescent material is applied to a 450~480nm blue LED light source to implement a white LED device and it has a simple structure, can obtain sufficient luminance, and is economical. However, in this method, in terms of spectrum analysis, it is difficult to mass-produce white LEDs having the same color coordinates due to color separation cause by the wide wavelength gap between blue and yellow band. There is a disadvantage that it is difficult to control optical properties such as color stability and color rendering. In addition, this method does not emit purple light in the range of 380 to 420nm, so it is white without purple color that can not implement the spectrum of the entire visible light spectrum as like sunlight. Because of this, it is difficult to implement a color rendering index(CRI) of 90 or higher, and natural light characteristics such as sunlight can not be expected. For this, need for a method of implementing sunlight with one LED by using a method of combining phosphors with one light source, rather than a method of combining red, blue, and yellow LEDs. Using this method, the characteristics of an artificial sunlight LED device with a spectrum similar to that of sunlight were demonstrated by implementing LED devices of various color temperatures with high color rendering by injecting phosphors into a 405nm deep blue LED light source. In order to find the spectrum closest to sunlight, different combinations of phosphors were repeatedly fabricated and tested. In addition, reliability and mass productivity were verified through temperature and humidity tests and ink penetration tests.

405 nm 살균용 UV LED 등기구의 청색광 위해에 관한 연구 (Blue-Light Hazards of 405 nm Sterilization LED Lamps)

  • 허현석;김충혁;남기호;김진사
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.266-274
    • /
    • 2023
  • Recently, sterilization technology has received increasing interest due to the COVID-19 pandemic and required safety precautions. Particularly, sterilization devices using near ultraviolet (UV) with a 405 nm wavelength are also drawing attention. It has a UV-C wavelength and other sterilization effects. Its blue-colored light on the boundary between UV and visible light is used as a light-emitting diode (LED) lamp for 405 nm sterilization, owing to its longer wavelengths than UV rays. However, the 405 nm wavelength contains blue light that can damage the eyes and skin during prolonged exposures and affect the emotional and biological parts of the body. Currently, 405 nm sterilization LED light registers are circulating in the market. However, they have not undergone safety tests for blue-light hazards. Thus, with the active distribution of sterilization LED lights, solid safety standards and management systems are essential to protect users from blue-light hazards. Accordingly, in this study, we conducted spectral radiance and spectral radiative luminance tests on 405 nm sterilization LED registers available in the market by the measurement criteria of IEC 62471. Safety standards must be established to secure users' safety against blue light hazards at a time when 405nm sterilization LED lights are actively distributed due to COVID-19.