• Title/Summary/Keyword: Blue host materials

Search Result 84, Processing Time 0.029 seconds

A Spirobenzofluorene Type Phosphine Oxide Molecule as A Triplet Host and An Electron Transport Material for High Efficiency in Phosphorescent Organic Light-Emitting Diodes

  • Jang, Sang-Eok;Jeon, Soon-Ok;Yook, Kyoung-Soo;Joo, Chul-Woong;Son, Hyo-Suk;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.767-770
    • /
    • 2009
  • We synthesized a spirobenzofluorene type phosphine oxide (SPPO2) as a new triplet host and an universal electron transport material for phosphorescent organic light-emitting diodes(PHOLEDs). Red PHOLEDs with the SPPO2 host material showed a high quantum efficiency of 14.3 % with a current efficiency of 20.4 cd/A. In addition, the SPPO2 could be applied as an electron transport material which can be matched with any host material due to the lowest unoccupied molecular orbital of 2.4 eV. Electron injection from a cathode to the SPPO2 electron transport layer was better than common electron transport materials. In particular, the SPPO2 was effective as the electron transport material in blue PHOLEDs and the quantum efficiency was more than doubled and driving voltage was lowered by more than 3 V using the SPPO2 instead of common electron transport material.

  • PDF

Effects of BCP Thickness on the Electrical and Optical Characteristics of Blue Phosphorescent Organic Light Emitting Diodes (BCP 두께가 청잭 인광 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.781-785
    • /
    • 2009
  • We have fabricated simple triple-layer blue-emitting phosphorescent organic light emitting diodes (OLEDs) using different thicknesses (25 and 55 nm) of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) electron transport layers. 1,1-bis[4-bis (4-methylphenyl)- aminophenyllcyclohexane (TAPC), bis[(4,6-di-fluorophenyl)-pyridinate-$N,C^{2'}$]picolinate (FIrpic) and N,N' -dicarbazolyl-3,5-benzene (mCP) were used as hole transport, blue guest and host materials, respectively. The driving voltage, electroluminescence (EL) efficiency and emission characteristics of devices were investigated. The maximum EL efficiency was 20 cd/A in the device with 55 nm BCP layer, which efficiency was about 33% higher than the device with 25 nm BCP layer. The higher efficiency in the 55 nm BCP device resulted from the enhanced electron-hole balance. In the EL spectrum of blue phosphorescent OLED with BCP layer, the relative intensity between 470 and 500 nm peaks was related to the location of emission zone.

Inorganic Phosphor Materials for White LED Display (백색 엘이디 디스플레이를 위한 형광체 재료 기술)

  • Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 2014
  • White LEDs (light-emitting diodes) are promising new-generation light sources which can replace conventional lamps due to their high reliability, low energy consumption and eco-friendly effects. This paper briefly reviews recent progress of oxy/nitride host phosphor and quantum dot materials with broad excitation band characteristics for phosphor-converted white LEDs. Among oxy/nitride host materials, $M_2Si_5N_8:Eu^{2+}$, $MAlSiN_3:Eu^{2+}$ M-SiON(M=Ca, Sr, Ba), ${\alpha}/{\beta}-SiAlON:Eu^{2+}$ are excellent phosphors for white LED using blue-emitting chip. They have very broad excitation bands in the range of 440-460 nm and exhibit emission from green to red. In this paper, In this review we focus on recent developments in the crystal structure, luminescence and applications of the oxy/nitride phosphors for white LEDs. In addition, the application prospects and current trends of research and development of quantum dot phosphors are also discussed.

Synthesis and Luminescence Properties of a Cyan-blue Thiosilicate-based Phosphor $SrSi_2S_5:Eu^{2+}$

  • Nakamuraa, Masayoshi;Katoa, Hideki;Takatsuka, Yuji;Petrykinc, Valery;Tezuka, Satoko;Kakihana, Masato
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.135-139
    • /
    • 2010
  • A series of Sr-Si-S compounds was synthesized using an advanced chemical method in which the use of one solution-based process uniformly dispersed the $Eu^{2+}$ activators in the host crystals, to find new compositions that would suit phosphor applications. Particular focus was given to the Si-rich region. This led to the synthesis of a single-phase compound that showed an unknown X-ray diffraction pattern. This compound had a composition close to that of $SrSi_2S_5$. When this compound is activated with $Eu^{2+}$ ($SrSi_2S_5:Eu^{2+}$), it shows a cyan-blue emission with a main luminescence peak at 495 nm. This emission is excited by wavelengths of 250-440 nm and has a maximum excitation at 350 nm.

Emission Characteristics of White Organic Light-Emitting Diodes Using Ultra Wide Band-gap Phosphorescent Material (Ultra Wide Band-gap 인광체를 이용한 백색 OLED의 발광 특성)

  • Chun, Hyun-Dong;Na, Hyunseok;Choo, Dong Chul;Kang, Eu-Seok;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.910-915
    • /
    • 2012
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. The best blue emitting OLED and red emitting OLED characteristics were obtained at a concentration of 12 vol.% FIrpic and 1 vol.% $Bt_2Ir$(acac) in UGH3, respectively. And the optimum thickness of the total emitting layer was 25 nm. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with red/blue/red, blue/red, red/blue and co-doping emitting layer structures were fabricated using a host-dopant system. In case of white PHOLEDs with co-doping structure, the best efficiency was obtained at a structure UGH3: 12 vol. % FIrpic: 1 vol.% $Bt_2Ir$(acac) (25 nm). The maximum brightness, current efficiency, power efficiency, external quantum efficiency, and CIE (x, y) coordinate were 13,430 $cd/m^2$, 40.5 cd/A, 25.3 lm/W, 17 % and (0.49, 0.47) at 1,000 $cd/m^2$, respectively.

Photoluminescence properties of $Gd_{1-x}Ln_xCa_3(GaO)_3(BO_3)_4$ (Ln=Eu, Tb, Tm) under UV excitation

  • Kyung, Hyun-Ai;Jung, Ha-Kyun;Seong, Tae-Yeon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1565-1568
    • /
    • 2007
  • A borate compound was adopted as new host material for $Eu^{3+}$, $Tb^{3+}$ and $Tm^{3+}$ activators. The phosphor samples, $Gd_{1-x}Eu_xCa_3(GaO)_3(BO_3)_4$, $Gd_{1-x}Tb_xCa_3(GaO)_3(BO3)_4$ and $Gd_{1-x}Tm_xCa_3(GaO)_3(BO_3)_4$ have been synthesized by conventional solid-state reaction. The crystalline phase for the resulting powders was identified using an X-ray diffraction $system^1$. Their photoluminescence properties under the excitation of UV ray were investigated. The Eu, Tb or Tm-doped $GdCa_3(GaO)_3(BO_3)_4$ emits efficient red, green or blue light, respectively. It was observed that the optimum concentration of Eu or Tb activator for the borate host was much higher than other $Eu^{3+}$ or $Tb^{3+}-doped$ phosphors.

  • PDF

Semiconductor CdTe-Doped CdO Thin Films: Impact of Hydrogenation on the Optoelectronic Properties

  • Dakhel, Aqeel Aziz;Jaafar, Adnan
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Doping or incorporation with exotic elements are two manners to regulate the optoelectronic properties of transparent conducting (TCO) cadmium oxide (CdO). Nevertheless, the method of doping host CdO by CdTe semiconductor is of high importance. The structural, optical, and electrical properties of CdTe-doped CdO films are studied for the sake of promoting their conducting parameters (CPs), including their conductivity, carrier concentration, and carrier mobility, along with transparency in the NIR spectral region; these are then compared with the influence of doping the host CdO by pure Te ions. X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and electrical measurements are used to characterise the deposited films prepared by thermal evaporation. Numerous results are presented and discussed in this work; among these results, the optical properties are studied through a merging of concurrent BGN (redshift) and BGW (blue shift) effects as a consequence of doping processes. The impact of hydrogenation on the characterisations of the prepared films is investigated; it has no qualitative effect on the crystalline structure. However, it is found that TCO-CPs are improved by the process of CdTe doping followed by hydrogenation. The utmost TCO-CP improvements are found with host CdO film including ~ 1 %Te, in which the resistivity decreases by ~ 750 %, carrier concentration increases by 355 %, and mobility increases by ~ 90 % due to the increase of Ncarr. The improvement of TCO-CPs by hydrogenation is attributed to the creation of O-vacancies because of H2 molecule dissociation in the presence of Te ions. These results reflect the potential of using semiconductor CdTe -doped CdO thin films in TCO applications. Nevertheless, improvements of the host CdO CPs with CdTe dopant are of a lesser degree compared with the case of doping the host CdO with pure Te ions.

Investigation of Photoluminescence Properties for Dibenzosiloles and Tetrabenzospirosilole

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.107-111
    • /
    • 2010
  • Silicon-containing ${\pi}$-conjugated compounds, especially silacyclopentadienes (siloles), have emerged as a new class of electroactive materials with good electron transport properties in OLEDs. 9,9'-spiro-9-silabifluorene compound as well as its starting material 2,2'-dibromobiphenyl have been synthesized with higher yields. Spirosilabifluorene is expected to be an efficient host material for the blue-light emitting diodes. 9,9'-spiro-9-silabifluorene, 1,1-dichloro-1-silafluorene, and 1,1-dimethyl-1-silafluorene were characterized by $^1H$-NMR, UV/Vis and photoluminescence spectroscopy.

Synthesis of the sulfide phosphors and white light generation based on InGaN chip

  • Kim, Kyung-Nam;Kim, Jae-Myung;Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Chang-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.679-682
    • /
    • 2004
  • $SrGa_2S_4$:Eu green phosphor and SrS:Eu red phosphor have been synthesized by co-precipitation method, respectively. Two sulfide phosphors were influenced by oxygen defect in host materials. Excitation spectra of these phosphors have high efficiency at the long wavelength region. And emission efficiency is increased under the excitation wavelength of 465nm. The combination of thiogallate green phosphor and sulfide red phosphor based on blue light InGaN chip has made it possible to emit white light.

  • PDF

Effect of Thulium Doping on Luminescence Properties of $YAIO_3$and $YTa_7O_{19}$

  • Hojin Ryu;Park, Hee-Dong
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.43-46
    • /
    • 1997
  • Thulium (Tm) has been incorporated into $YAlO_3$ and $YTa_7O_{19}$ host materials to obtain blue phosphors. $Tm^{3+}$-doped $YAlO_3$ and $YTa_7O_{19}$ phosphors were prepared by the conventional solid state reaction method. According to the results of excitation and emission spectra measured at room temperature, the blue emission intensity of $Tm^{3+}$-doped $YTa_7O_{19}$, peaking at 455 nm was much higher than that of $Tm^{3+}-doped\; YAlO_34, peaking at 458 nm. The maximum of relative intensity of $Tm^{3+}-doped\; YAlO_3\; and\; YTa_7O_{19}$ was obtained at the doping concentration of 0.016 and 0.120 mol% $Tm^{3+}$, respectively. These emission spectra revealed the concentration quenching effect.

  • PDF