• Title/Summary/Keyword: Blue emission

Search Result 617, Processing Time 0.031 seconds

Design of white tandem organic light-emitting diodes for full-color microdisplay with high current efficiency and high color gamut

  • Cho, Hyunsu;Joo, Chul Woong;Choi, Sukyung;Kang, Chan-mo;Kim, Gi Heon;Shin, Jin-Wook;Kwon, Byoung-Hwa;Lee, Hyunkoo;Byun, Chun-Won;Cho, Nam Sung
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1093-1102
    • /
    • 2021
  • Microdisplays based on organic light-emitting diodes (OLEDs) have a small form factor, and this can be a great advantage when applied to augmented reality and virtual reality devices. In addition, a high-resolution microdisplay of 3000 ppi or more can be achieved when applying a white OLED structure and a color filter. However, low luminance is the weakness of an OLED-based microdisplay as compared with other microdisplay technologies. By applying a tandem structure consisting of two separate emission layers, the efficiency of the OLED device is increased, and higher luminance can be achieved. The efficiency and white spectrum of the OLED device are affected by the position of the emitting layer in the tandem structure and calculated via optical simulation. Each white OLED device with optimized efficiency is fabricated according to the position of the emitting layer, and red, green, and blue spectrum and efficiency are confirmed after passing through color filters. The optimized white OLED device with color filters reaches 97.8% of the National Television Standards Committee standard.

Water-stable solvent dependent multicolored perovskites based on lead bromide

  • Sharipov, Mirkomil;Hwang, Soojin;Kim, Won June;Huy, Bui The;Tawfik, Salah M.;Lee, Yong-Ill
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.187-197
    • /
    • 2022
  • The synthesis of organic and hybrid organic-inorganic perovskites directly from solution improves the cost- and energy-efficiency of processing. To date, numerous research efforts have been devoted to investigating the influence of the various solvent parameters for the synthesis of lead halide perovskites, focused on the effects of different single solvents on the efficiency of the resulting perovskites. In this work, we investigated the effect of solvent blends for the first time on the structure and phase of perovskites produced via the Lewis base vapor diffusion method to develop a new synthetic approach for water-stable CsPbBr3 particles with nanometer-sized dimensions. Solvent blends prepared with DMF and water-miscible solvents with different Gutmann's donor numbers (DN) affect the Pb ions differently, resulting in a variety of lead bromide species with various colors. The use of a DMF/isopropanol solvent mixture was found to induce the formation of the Ruddlesden-Popper perovskite based on lead bromide. This perovskite undergoes a blue color shift in the solvated state owing to the separation of nanoplatelets. In contrast, the replacement of isopropanol with DMSO, which has a high DN, induces the formation of spherical CsPbBr3 perovskite nanoparticles that exhibit green emission. Finally, the integration of acetone in the solvent system leads to the formation of lead bromide complexes with a yellow-orange color and the perovskite CsPbBr3.

Smart Harness for Preventing Pet Loss Outdoors (실외에서 애완견 분실 방지를 위한 스마트 어깨줄)

  • Lee, Jun-Hyeok;Ruy, Se-Hyun;Lim, Jong-Chan;Chou, Tea-Hyun;Han, Yeong-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.709-718
    • /
    • 2021
  • In this paper, it can be seen that the number of abandoned dogs increases every year through the statistics on the occurrence of abandoned animals. With the goal of reducing the number of stray dogs, a smart pet dog shoulder strap is implemented based on a real-time location tracking system using the ESP32 module and GPS sensor. It is an ESP32 module with a built-in Bluetooth module. It is input to the MCU using various sensors, and finally outputs to a smart-phone application, and communicates through the built-in blue-tooth module. In addition, it uses Neopixels to compensate the weaknesses at night through LED light emission, and automatically sets the warning distance to design a music playback system through the LED flashing effect and MP3 module. In addition, a smart pet dog shoulder strap was designed to help pet dog health care by measuring the moving distance according to the amount of activity through the gyro sensor.

Long-term simultaneous monitoring observations of SiO and H2O masers toward Mira variable WX Serpentis

  • Lim, Jang Ho;Kim, Jaeheon;Son, Seong Min;Suh, Kyung-Won;Cho, Se-Hyung;Yang, Haneul;Yoon, Dong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.49.1-49.1
    • /
    • 2021
  • We carried out simultaneous monitoring observations of five maser lines, H2O (22 GHz), SiO 𝝊 =1, 2, J =1-0 (43.1, 42.8 GHz), and SiO 𝝊 =1, J=2-1, J =3-2 (86.2, 129.3 GHz), toward the Mira variable star WX Serpentis with the 21-m antennas of the Korean VLBI Network (KVN) in 2009-2021 (~12 years). Most spectra of the H2O maser are well separated into two parts of two blue- and one redshifted features within ± 10 km s-1 of the stellar velocity. All detected SiO masers are generally concentrated within ± 5 km s-1 of the stellar velocity, and sometimes appear split into two components. Overall, the profiles of SiO and H2O masers detected in WX Serpentis illustrate typical characteristics of the Mira variable. In addition, flux variations of both SiO and H2O masers are well correlated with the optical light curve of the central star, showing a phase lag of ~ 0.1 for SiO masers and ~ 0.2 for H2O maser. This phenomenon is considered to be the direct effect of propagating shock waves generated by the stellar pulsation, because SiO and H2O masers are sequentially distributed at different positions with respect to the central star. In addition, we analyzed long-term trends and characteristics of maser velocities, maser ratio, and the velocity extents (the full width at zero power; FWZP). We also investigated a spectral energy distribution (SED) ranging from 1.2 to 240 ㎛ obtained using several infrared data: 2MASS, WISE, IRAS, ISO, COBE DIBRE, RAFGL, and AKARI (IRC and FIS). From the IRAS LRS and ISO SWS spectra of this star, we identified 9.7 and 12 ㎛ silicate emission features consistent with the SE6 spectrum model, corresponding to the typical AGB phase.

  • PDF

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Effect of Injection Pressure and Injection Timing on Spray and Flame Characteristics of Spray-Guided Direct-Injection Spark-Ignition Engine under Lean Stratified Combustion Operation (성층희박연소 운전조건에서 분사시기에 따른 분무유도식 직접분사 가솔린엔진의 분무 및 화염특성)

  • Oh, Heechang;Lee, Minsuk;Park, Jungseo;Bae, hoongsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.221-228
    • /
    • 2013
  • An experimental study was carried out to investigate the effects of the injection timing on the spray and combustion characteristics in a spray-guided direct-injection spark-ignition (DISI) engine under lean stratified operation. An in-cylinder pressure analysis, exhaust emissions measurement, and visualization of the spray and combustion were employed in this study. The combustion in a stratified DISI engine was found to have both lean premixed and diffusion controlled flame combustion characteristics. The injection timing condition corresponding to the stratified mixture characteristics was verified to be a dominant factor for these flame characteristics. For the early injection timing, a non-luminous blue flame and low combustion efficiency were observed as a result of the lean homogeneous mixture formation. On the other hand, a luminous sooting flame was shown at the late injection timing because of an under-mixed mixture formation. In addition, the smoke emission and incomplete combustion products were increased at the late injection timing as a result of the increased locally rich area. On the other hand, the NOx emissions decreased and IMEP increased as the injection timing retarded. The combustion phasing produced by the injection timing was verified as the reason for this observation.

Metal Concentrations Analysed in the Inorganic Bulk Pigment Samples by ICP-AES and the Provision Rate of MSDS and Agreement Rate with MSDS (우리 나라에서 제조/사용하는 일부 무기 안료중 ICP-AES를 이용한 주요 중금속 농도와 MSDS 비치율 및 일치율 비교)

  • Kim, Hyoung-Ah;Lee, Kyoung-Joo;Kim, Yong-Woo;Kim, Hyun Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.196-208
    • /
    • 1998
  • To improve the quality of environmental measurements and evaluation of the workplace air in the pigment manufacturing industries, we analyzed metal(chromium, cadmium, lead, iron, cobalt, manganese, antimony, titanium, arsenic, and selenium) concentrations by ICP-AES in sixty seven samples of inorganic bulk pigments which are produced and/or used in Korea. We also collected MSDS which has to be supplied by manufacturer and/or supplier and posted in the workplace according to the Hazard Communication Standards, and compared the number of metals listed in each MSDS with the number of metals determined by ICP-AES. Results were as followed; 1. Among seventeen yellowish-colored samples, chromium(2~19%) and lead(0.1~61%) were the two major metals. In thirteen reddish-colored samples, iron was the major component with 37~81%. Cobalt and manganese were detected in blue-colored samples with less than 1%, while antimony and titanium were the major two metals in white-colored pigments with 178~300 ppm and with 36~65%, respectively. 2. In area samples collected in workplace air(one pigments producing factory and five retailer stores), iron and manganese were detected but the concentrations not exceeded the TLVs(1 and $5mg/m^3$, respectively). In three of fifteen samples, the concentrations of lead exceeded the TLV ($0.05mg/m^3$). 3. Two out of seven companies provided MSDS, and the average provision rate was 22.4%. And the coincidence rate of the number of metals referenced in MSDS and determined by ICP-AES mostly accorded, but in one sample, different metal was detected from MSDS. In summary, metals have to be concerned in evaluation of the workplace air dealing with compounds of inorganic pigments dust are cobalt, chromium, iron, manganese, lead and antimony, and these are simultaneously determined by ICP-AES. Taking this opportunity, it is needed to reinforce that the personnel is to be concerned about prevention of workers' ill health regarding to provision of MSDS.

  • PDF

Morphological and Photoluminescence Characteristics of Laterally Self-aligned InGaAs/GaAs Quantum-dot Structures (수평 자기정렬 InGaAs/GaAs 양자점의 형태 및 분광 특성 연구)

  • Kim J. O.;Choe J. W.;Lee S. J.;Noh S. K.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Laterally self-aligned InGaAs/GaAs quantum-dots (QDs) have been fabricated by using a multilayer stacking technique. For the growth optimization, we vary the number of stacks and the growth temperature in the ranges of 1-15 periods and $500-540^{\circ}C$. respectively, Atomic force microscope (AFM) images and photoluminescence (PL) spectra reveal that the lateral alignment of QDs is enhanced in extended length by an increased stack period, but severely degrades into film-like wires above a critical growth temperature. The morphological and the photoluminescence characteristics of laterally self-aligned InGaAs QDs have been analyzed through mutual comparisons among four samples with different parameters. An anisotropic arrangement develops with increasing number of stacks, and high-temperature capping allows isolated QDs to be spontaneously organized into a one-dimensionally aligned chain-like shape over a few ${\mu}m$, Moreover, the migration time allowed by growth interruption plays an additional important role in the chain arrangement of QDs. The QD chains capped at high temperature exhibit blue shifts in the emission energy, which may be attributed to a slight outdiffusion of In from the InGaAs QDs.

Characteristics of 32 × 32 Photonic Quantum Ring Laser Array for Convergence Display Technology (디스플레이 융합 기술 개발을 위한 32 × 32 광양자테 레이저 어레이의 특성)

  • Lee, Jongpil;Kim, Moojin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.161-167
    • /
    • 2017
  • We have fabricated and characterized $32{\times}32$ photonic quantum ring (PQR) laser arrays uniformly operable with $0.98{\mu}A$ per ring at room temperature. The typical threshold current, threshold current density, and threshold voltage are 20 mA, $0.068A/cm^2$, and 1.38 V. The top surface emitting PQR array contains GaAs multiquantum well active regions and exhibits uniform characteristics for a chip of $1.65{\times}1.65mm^2$. The peak power wavelength is $858.8{\pm}0.35nm$, the relative intensity is $0.3{\pm}0.2$, and the linewidth is $0.2{\pm}0.07nm$. We also report the wavelength division multiplexing system experiment using angle-dependent blue shift characteristics of this laser array. This photonic quantum ring laser has angle-dependent multiple-wavelength radial emission characteristics over about 10 nm tuning range generated from array devices. The array exhibits a free space detection as far as 6 m with a function of the distance.

A review on inorganic phosphor materials for white LEDs (백색 발광다이오드(White LEDs)용 무기형광체 재료의 연구개발 현황)

  • Hwang, Seok Min;Lee, Jae Bin;Kim, Se Hyeon;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.233-240
    • /
    • 2012
  • White LEDs (light-emitting diodes) are promising new-generation light sources which can replace conventional lamps due to their high reliability, low energy consumption and eco-friendly effects. This paper briefly reviews recent progress of oxy/nitride host phosphor and quantum dot materials with broad excitation band characteristics for phosphor-converted white LEDs. Among oxy/nitride host materials, $M_2Si_5N_8$ : $Eu^{2+}$, $MAlSiN_3$ : $Eu^{2+}$ M-SiON (M = Ca, Sr, Ba), ${\alpha}/{\beta}$-SiAlON : $Eu^{2+}$ are excellent phosphors for white LED using blue-emitting chip. They have very broad excitation bands in the range of 440~460 nm and exhibit emission from green to red. In this paper, In this review we focus on recent developments in the crystal structure, luminescence and applications of the oxy/nitride phosphors for white LEDs. In addition, the application prospects and current trends of research and development of quantum dot phosphors are also discussed.