• Title/Summary/Keyword: Blue and white emission

Search Result 152, Processing Time 0.024 seconds

White Electroluminescent Device Implementation and Its Electrical and Optical Properties (백색 전계 발광소자의 구현과 전기 .광학적 특성)

  • 양종경;김종욱;김진만;노승수;박홍용;이종찬;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.343-346
    • /
    • 2001
  • To implementation of white electroluminescnet device in this paper, two methods were tried without synthesis of new white EL phosphor. At first, ZnS:Mn,Cl was mixed with ZnS:Cu from 20 to 50 weight percents. Second, ZnS:Mn,Cl was mixed with blue dye from 0 to 1.2 weight percents. The devices for experiments were measured as following; current-voltage, emission spectrum, brightness-voltage and CIE coordinate system and frequency properties.

  • PDF

Efficient White Organic Light-emitting Device by utilizing a Blue-emitter Doped with a Red Fluorescent Dopant

  • Lim, Jong-Tae;Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee;Ko, Young-Wook;Lee, Jin-Ho
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.13-18
    • /
    • 2003
  • We synthesized bis (2-methyl-8-quinolinolato)(triphenylsiloxy) aluminum (III) (SAlq), a blue-emitting material having a high luminous efficiency, through a homogeneous-phase reaction. The photoluminescence (PL) and electroluminescence (EL) spectra of SAlq show two peaks at 454 nm and 477 nm. Efficient white light-emitting devices are fabricated by doping SAlq with a red fluorescent dye of 4-dicyanomethylene-2-methyl-6-{2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8yl) vinyl}-4H-pyran (DCM2). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCM2 results in light-emission of both blue and orange colors. Devices with the structure of ITO/TPD (50 nm)/SAlq:DCM2 (30 nm, 0.5 %)/$Alq_3$ (20 nm)/LiF (0.5 nmj/Al show EL peaks at 456 nm and 482 nm originating from SAlq and at 570 nm from DCM2, resulting in the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.37). The device exhibits an external quantum efficiency of about 2.3 % and a luminous efficiency of about 2.41m/W at 100 $cd/m^2$. A maximum luminance of about 23,800 $cd/m^2$ is obtained at the bias voltage of 15 V.

Structural and Luminescent Properties of Gd2WO6:RE3+ (RE = Dy, Sm, Dy/Sm) Phosphors for White Light Emitting Devices (백색광 소자 응용을 위한 Gd2WO6:RE3+ (RE = Dy, Sm, Dy/Sm) 형광체의 구조 및 발광 특성)

  • Park, Giwon;Jung, Jaeyong;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.131-137
    • /
    • 2020
  • A series of Dy3+, Sm3+, and Dy3+/Sm3+ doped Gd2WO6 phosphors were synthesized by the conventional solid-state reaction. The X-ray diffraction patterns revealed that all of the diffraction peaks could be attributed to the monoclinic Gd2WO6 crystal structure, irrespective of the type and the concentration of activator ions. The photoluminescence (PL) excitation spectra of Dy3+-doped Gd2WO6 phosphors contained an intense charge transfer band centered at 302 nm in the range of 240-340 nm and two weak peaks at 351 and 386 nm. Under an excitation wavelength of 302 nm, the PL emission spectra consisted of two strong blue and yellow bands centered at 482 nm and 577 nm. The PL emission spectra of the Sm3+-doped Gd2WO6 phosphors had a series of three peaks centered at 568 nm, 613 nm, and 649 nm, corresponding to the 6G5/26H5/2, 6G5/26H9/2, and 6G5/26H11/2 transitions of Sm3+, respectively. The PL emission spectra of the Dy3+- and Sm3+-codoped Gd2WO6 phosphors showed the blue and yellow emission lines originating from the 4F9/26H15/2 and 4F9/24H13/2 transitions of Dy3+ and reddish-orange and red emission bands due to the 4G5/26H7/2 and 4G5/26H9/2 transitions of Sm3+. As the concentration of Sm3+ increased from 1 to 15 mol%, the intensities of two PL spectra emitted by the Dy3+ ions gradually decreased, while those of the three emission bands due to the Sm3+ ions slowly increased, thus producing the color change from white to orange. The CIE color coordinates of Gd2WO6:5 mol% Dy3+, 1 mol% Sm3+ phosphors were (0.406, 0.407), which was located in the warm white light region.

Emission Characteristics of White Organic Light-Emitting Diodes Using Blue Fluorescent and Red Phosphorescent Materials (청색 형광과 적색 인광 물질을 사용한 백색 OLED의 발광 특성)

  • Park, Chan-Suk;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.704-710
    • /
    • 2015
  • We studied white organic light-emitting diodes using blue fluorescent and red phosphorescent materials. White single OLEDs were fabricated using SH-1 : BD-2 (3 vol.%) and CBP : $Ir(mphmq)_2(acac)$ (2 vol.%) as emitting layer (EML). The white single OLED using SH-1 : BD-2 (3 vol.% 8 nm) / CBP : $Ir(mphmq)_2(acac)$ (2 vol.% 22 nm) as emitting layer showed maximum current efficiency of 8.8 cd/A, Commission Internationale de l'Eclairage (CIE) coordinates of (0.403, 0.351) at $1,000cd/m^2$, and variation of CIE coordinates with ($0.402{\pm}0.012$, $0.35{\pm}0.002$) from 500 to $3,000cd/m^2$. The white tandem OLED using SH-1 : BD-2 (3 vol.% 12 nm) / CBP : $Ir(mphmq)_2(acac)$ (2 vol.% 18 nm) showed maximum efficiency of 19.6 cd/A, CIE coordinates of (0.354, 0.365) at $1,000cd/m^2$, and variation of CIE coordinates with ($0.356{\pm}0.016$, $0.364{\pm}0.002$) from 500 to $3,000cd/m^2$. Maximum current efficiency of the white tandem OLED was more twice as high as the single OLED. Our findings suggest that tandem OLED was possible to produce improved efficiency and excellent color stability.

Ce:YAG remote phosphor coating for white LED with silica sol binder (Silica sol 바인더를 적용한 백색 LED용 Ce:YAG remote 형광체 코팅)

  • Gim, Su Jin;Park, Ha Na;Choi, Jae Ho;Jung, Yoon Sung;Kim, Hyeong-Jun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.212-217
    • /
    • 2021
  • The applicability of the white LED from the blue LED of the coating film as a binder for surface and curved coatings were confirmed. The particle size of YAG is D50: 9~10 ㎛, and the crystal structure is garnet (Y3Al5O12), cubic. The coating film had no cracks, at the same time, the silica sol was uniformly coated with YAG phosphor, and the YAG content and thickness in the coating film showed a tendency to increase up to 40 ㎛ in proportion to the increase in the amount added. Furthermore, as the YAG content increased, the PL emission intensity increased and the color coordinate shift toward the end of the chromatic locus curve was confirmed.

Synthesis of a novel non-conjugated Blue emitting material Copolymer and Fabrication of mono color OLED by doping various Fluorescent Dyes

  • Cho Jae Young;Oh Hwan Sool;Yoon Seok Beom;Kang Myung Koo
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.675-679
    • /
    • 2004
  • The existing conjugated blue emitting material polymer which has been used for the two-wavelength method white-emission has good stability and low operating voltage as merits, but the imbalanced carrier transport has been indicated as problem area. We have introduced a novel blue emitting material having perylene moiety unit with hole transporting ability and blue emitting property and triazine moiety unit with electron transporting ability into the same host chain. We have synthesized N-[p-(perylen-3-y1)pheny1]methacry1 amide (PPMA) monomer and [N-(2,4-dipheny1-1,3,5-triazine)pheny1 methacry1 amide] (DTPM) monomer having blue light-emitting unit and electron transport unit, respectively by three steps. A novel non-conjugated blue emitting material Poly[N -[p­(perylene-3-y1) pheny1] methacry1 amide-co-N-[P-(4,6-dipheny1-1,3,5-triazine-2-y1]pheny1]methacry1 amide] (PPPMA-co-DTPM) copolymer having electron transporting unit was synthesized by the solution polymerization of PPMA and DTPM monomers with an AIBN initiator and showed high yield of $75{\%}$. It was very soluble in common organic solvents, and the fabrication of the thin film using a spin coating method was very simple. The PPPMA exhibited a good thermal stability.

  • PDF

Two Wavelength OLED with the Stacked GDI602(691)/GDI602(Rubrene) Fluorescent Layer (Stacked GDI602(691)/GDI602(Rubrene) 형광층을 갖는 2-파장 유기발광소자)

  • Jang, Ji-Geun;Chang, Ho-Jung;Oh, Myung-Hwan;Kang, Jung-Won;Lee, Jun-Young;Gong, Myoung-Seon;Lee, Young-Kwan;Kim, Hee-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.198-202
    • /
    • 2007
  • A new organic light emitting device(OLED) with two peak wavelength(blue and yellow) emission was fabricated using the selective doping in a single fluorescent host , and its electrical and optical characteristics were investigated. The fabricated device showed the luminance and efficiency of 1600 $Cd/m^2$ and 2.4 Im/W under the applied voltage of 10V, respectively. And its electroluminescent spectra had two peak wavelengths of 470nm and 560nm emitting bluish white light. The OLED with dual wavelength emission in this experiment is likely to be developed as a white OLED with simpler fluorescent system than conventional devices.

White organic light-emitting devices with a new DCM derivative as an efficient red-emitting material

  • Lee, Mun-Jae;Lee, Nam-Heon;Song, Jun-Ho;Park, Kyung-Min;Yoo, In-Sun;Lee, Chang-Hee;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.940-943
    • /
    • 2003
  • We report the fabrication and the characterization of white organic light-emitting devices consisting of a red-emitting layer of a new DCM derivative doped into 4,4'bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (${\alpha}-NPD$) and a blue-emitting layer of 1,4-bis(2,2-diphenyl vinyl)benzene (DPVBi). The device structure is ITO/PEDOT:PSS/${\alpha}-NPD$ (50 nm)/${\alpha}-NPD$:DCM (5 nm, 0.2 %)/DPVBi (x)/Alq3 (40 nm)/LiF (0.5 nm)/Al. The electroluminescence (EL) spectra consist of two broad peaks around 470 nm and 580 nm with the spectral emission depending on the thickness of DPVBi. The device with the DPVBi thickness of about 20 nm show a white light-emission with the Commission Internationale d'Eclairage(CIE) chromaticity coordinates of (0.33, 0.36). The external quantum efficiency is 2.6% and luminous efficiency is 2.0 lm/W at a luminance of 100 $cd/m^{2}$. The maximum luminance is about 30,270 $cd/m^{2}$ at 13.9 V.

  • PDF

Synthesis and Luminescent Characteristics of Sr4Al14O25 Phosphor (Sr4Al14O25 형광체의 합성과 발광특성)

  • Han Sang Hyuk;Kim Young Jin
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.529-534
    • /
    • 2004
  • $Sr_{4}Al_{14}O_{25}$ was synthesized by solid state reaction with flux. $H_{3}BO_3$ was used to synthesize $SrO-Al_{2}O_{3}$ phosphor system as a flux. The effect of doping system such as Eu+Dy, Eu, and Ce on the luminescent properties of $Sr_{4}Al_{14}O_{25}$ was investigated. Both PL spectra of $Sr_{4}Al_{14}O_{25}$:Eu and $Sr_{4}Al_{14}O_{25}$:Eu+Dy excited at 390 nm showed greenish-blue emission at about 490 nm, while the emission wavelength was shifted to 400 nm by doping Ce. The reduction of $Eu^{3+}$ ions to $Eu^{2+}$ could be accomplished by the annealing process under $N_{2}^{+}$ vacuum atmosphere, and attributed to the emission at 490 nm. It is verified that $Sr_{4}Al_{14}O_{25}$:Eu phosphor is suitable for white LEDs became of a broad absorption band peaking at 390 nm.

Fabrication of White Organic light Emission Device Using Selective Doping in a Single Host (단일 호스트를 이용하여 선택적으로 도핑된 백색 OLED 제작)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.74-75
    • /
    • 2009
  • White light emitting device based on a red fluorescence material (5,6,11,12)-Tetraphenylnaphthacene(Rubrene) has been fabricated. The white OLED consists of it and a blue phosphorescent material FIrPic (iridum-bis(4,6,-difluorophenylpyridinato-N,C2)-picolinate) The threshold voltage is 5.3V, and the brightness reaches $1000\;cd/m^2$ at 11V, $14.5\;mA/cm^2$. The color of the light corresponds to a CIE coordinate of (0.30, 0.38). The highest efficiency of the device can reach 9.5 cd/A or 5.5 1m/W at 6V, $0.1mA/cm^2$.

  • PDF