• Title/Summary/Keyword: Blue Water Footprint

Search Result 10, Processing Time 0.029 seconds

Estimation of Water Footprint for Upland Crop Production in Korea (한국의 밭작물 생산에서의 물발자국 산정)

  • Yoo, Seung-Hwan;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.65-74
    • /
    • 2014
  • Water footprint is defined as the total volume of direct and indirect water used to produce a good and service by consumer or producer, and measured at the point of production based on virtual water concept. The green and blue water footprint refers to the volume of the rainwater and the irrigation water consumed, respectively. Crop water footprint is expected to be used as the basic data for agricultural water resources policies at production, consumption and trade aspect. Thus, it is necessary to estimate suitable green and blue water footprint for South Korea. The objective of this paper is to quantify the green and blue water footprint and usage of upland crops during the period 2001-2010. To estimate the water footprint, 43 upland crop production quantity and harvested area data were collected for 10 years and FAO Penman-Monteith equation was adopted for calculating crop water requirement. As the results, the water footprint of cereals, vegetables, fruits and oil crops accounted for 1,994, 165, 605, and 4,226 $m^3/ton$, respectively. The usage of water footprint for crop production has been estimated at 3,499 (green water) and 216 (blue water) $Mm^3/yr$ on average showing a tendency to decrease. Fruits and vegetables have the largest share in the green water usage, consuming about 1,200 and 1,060 $Mm^3/yr$ which are about 65 % of gross usage. The results of this study are expected to be understood by the agricultural water footprint as well as by the total water footprint from both a production and consumption perspective in Korea.

Analysis and Application of Water Footprint to Improve Water Resource Management System - With a Focus on Seoul City - (서울시 물환경관리체계 개선을 위한 물발자국 도입 및 활용방안에 관한 연구 - 서울시 자치구 물환경관리 정책 및 제도, 관리체계 분석을 중심으로 -)

  • Chun, Dong Jun;Kim, Jin-Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.3
    • /
    • pp.222-232
    • /
    • 2016
  • Water Footprint is utilized to analyze direct and indirect water consumption for sustainable water resource management. This study aims to understand potential applicability of water footprint concept by analyzing the status of water consumption and related water policies in Seoul. We analyzed a direct gray water footprint and the blue water footprint in Seoul affected by the social and economic characteristics of the consumers in the city. In particular, in order to analyze the blue water footprint represented by both surface and underground water for the provision and consumption of products, we calculated the actual water consumptions of surface and underground water for 25 districts in Seoul. Our analysis in consideration of population and households indicates that Jung-gu has the highest blue water footprint followed by Jongro-gu, Gangnam-gu, Yongsan-gu, and Seocho-gu. Gray water footprint was calculated by estimating the amount of water for purifying wastewater to meet the water quality standard (above BOD 3.5ppm) for each district. As a result, Jung-gu has the highest gray water footprint, followed by Jongro-gu, Gangnam-gu, Yongsan-gu, Seocho-gu, and Youngdeungpo-gu. Our study suggests the potential value of using water footprint concept to complement the current limitations of water use management focusing on water supply control. We expect that our analysis will provide an important basis for considering water use management which is economically and socially more resilient and sustainable.

Analysis of Paddy Rice Water Footprint under Climate Change Using AquaCrop (AquaCrop을 이용한 기후변화에 따른 미래 논벼 물발자국 변화 분석)

  • Oh, Bu-Yeong;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Climate change causes changes in rainfall patterns, temperature and drought frequency. Climate change impact influences on water management and crop production. It is critical issue in agricultural industry. Rice is a staple cereal crop in South Korea and Korea uses a ponding system for its paddy fields which requires a significant amount of water. In addition, water supply has inter-relationship with crop production which indicates water productivity. Therefore, it is important to assess overall impacts of climate change on water resource and crop production. A water footprint concept is an indicator which shows relationship between water use and crop yield. In addition, it generally composed of three components depending on water resources: green, blue, grey water. This study analyzed the change trend of water footprint of paddy rice under the climate change. The downscaled climate data from HadGEM3-RA based on RCP 8.5 scenario was applied as future periods (2020s, 2050s, 2080s), and historical climate data was set to base line (1990s). Depending on agro-climatic zones, Suwon and Jeonju were selected for study area. A yield of paddy rice was simulated by using FAO-AquaCrop 5.0, which is a water-driven crop model. Model was calibrated by adjusting parameters and was validated by Mann-Whitney U test statistically. The means of water footprint were projected increase by 55 % (2020s), 51 % (2050s) and 48 % (2080s), respectively, from the baseline value of $767m^2/ton$ in Suwon. In case of Jeonju, total water footprint was projected to increase by 46 % (2020s), 45 % (2050s), 12 % (2080s), respectively, from the baseline value of $765m^2/ton$. The results are expected to be useful for paddy water management and operation of water supply system and apply in establishing long-term policies for agricultural water resources.

Water footprint estimation of selected crops in Laguna province, Philippines

  • Salvador, Johnviefran Patrick;Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.294-294
    • /
    • 2022
  • In 2013, the Asian Development Bank classified the Philippines among the countries facing high food security risks. Evidence has suggested that climate change has affected agricultural productivity, and the effect of extreme climatic events notably drought has worsened each year. This had resulted in serious hydrological repercussions by limiting the timely water availability for the agriculture sector. Laguna is the 3rd most populated province in the country, and it serves as one of the food baskets that feed the region and nearby provinces. In addition to climate change, population growth, rapid industrialization, and urban encroachment are also straining the delicate balance between water demand and supply. Studies have projected that the province will experience less rainfall and an increase in temperature, which could simultaneously affect water availability and crop yield. Hence, understanding the composite threat of climate change for crop yield and water consumption is imperative to devise mitigation plans and judicious use of water resources. The water footprint concept elaborates the water used per unit of crop yield production and it can approximate the dual impacts of climate change on water and agricultural production. In this study, the water footprint (WF) of six main crops produced in Laguna were estimated during 2010-2020 by following the methodology proposed by the Water Footprint Network. The result of this work gives importance to WF studies in a local setting which can be used as a comparison between different provinces as well as a piece of vital information to guide policy makers to adopt plans for crop-related use of water and food security in the Philippines.

  • PDF

Assessment & Estimation of Water Footprint on Soybean and Chinese Cabbage by APEX Model (APEX 모형을 이용한 밭작물(콩, 배추) 물발자국 영향 평가)

  • Hur, Seung-Oh;Choi, Soonkun;Hong, Seong-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.159-165
    • /
    • 2019
  • BACKGROUND: The water footprint (WF) is an indicator of freshwater use that appears not only at direct water use of a consumer or producer, but also at the indirect water use. As an indicator of 'water use', the water footprint includes the green, blue, and grey WF, and differs from the classical measure of 'water withdrawal' because of green and grey WF. This study was conducted to assess and estimate the water footprint of the soybean and Chinese cabbage. METHODS AND RESULTS: APEX model with weather data, soil and water quality data from NAS (National Institute of Agricultural Sciences), and farming data from RDA (Rural Development Administration) was operated for analyzing the WF of the crops. As the result of comparing the yield estimated from APEX with the yield extracted from statistic data of each county, the coefficients of determination were 0.83 for soybean and 0.97 for Chinese cabbage and p-value was statistically significant. The WFs of the soybean and Chinese cabbage at production procedure were 1,985 L/Kg and 58 L/Kg, respectively. This difference may have originated from the cultivation duration. The WF ratios of soybean were 91.1% for green WF and 8.9% for grey WF, but the WF ratios of Chinese cabbage were 41.5% for green WF and 58.5% for grey WF. CONCLUSION: These results mean that the efficiency of water use for soybean is better than that for Chinese cabbage. The results could also be useful as an information to assess environmental impact of water use and agricultural farming on soybean and Chinese cabbage.

Analyzing the Contribution of Regional Water Resource through the Regional Blue Water Flows of Rice Products (쌀 생산 및 소비에 따른 지역 간 청색 가상수 흐름 추정을 통한 지역 수자원의 기여도 분석)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Yoo, Seung-Hwan;Kim, Yoon Hyung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The aim of this study is to analyze the contribution of regional water resources through the gap between water used for rice production and water used for consumption. The blue water use for rice production and for consumption was quantified and the regional blue water flows were estimated using the virtual water concept from 1995 to 2010. About $1134.4Mm^3/yr$ of blue water flowed among the provinces and metropolises of Korea, and about 28.5 % of total blue water flows came from Jeonnam province. In addition, blue water usage for rice was classified into three categories: water for production, internal consumption, and overproduction in each region. In Jeonnam, $633.8Mm^3/yr$ of blue water totally used for rice production, and 50.9 % and 15.5 % were used for external and internal rice consumption, respectively. The other 33.6 % was used for over production of rice for food security. This study assumed the blue water flows depended on the gap between virtual water use for rice production and consumption. However, the analysis of regional blue water usage and flows might show the importance of other region's water resources, and make policy decision-makers aware of the integrated water management among the regions.

Method of Introduce for International Standards for Water Footprint Calculations (물발자국의 국제표준화와 국내 도입 방안)

  • Park, Sung Je;Lee, Young Kune;Ryu, Si Saeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.267-267
    • /
    • 2015
  • 가상수의 흐름을 보다 가시적으로 파악하기 위하여 대두된 개념이 물발자국(water footprint)이다. 이는 흔히 사용되고 있는 생태발자국(ecological footprint)이나 탄소발자국(carbon footprint)에 착안하여 도입된 개념으로 한 국가의 물발자국은 직 간접적으로 물건이나 재화를 생산하는데 국민이 소비하는 물의 총량으로 정의된다. 물발자국을 내적/외적으로 단순히 구분하여 산정하는 방식이 진화하여 1단위의 생산에서 유통 및 서비스까지 확대하여 그 전 과정을 모두 포함하는 물발자국 산정방식이 도입된 것은 최근의 일이다. 직접적인 물사용과 간접적인 물사용을 구분하여 물발자국을 산정하고, 그 위에 물의 성질에 따라 green water, blue water, 그리고 grey water로 각각 개념을 상세화하여 물발자국을 산정하는 방안이 도입되었다. 2009년 물발자국 산정의 표준화를 위한 스위스의 제안이 ISO에 제출되었고, 각 국가들에 의한 투표가 진행되어 2010년 물발자국 국제표준안이 채택되었다. 본 연구는 이러한 국제기구에 의한 일련의 국제표준화 작업을 대상으로 진행되었다. 2014년 ISO/TC 207 국제총회가 개최되어 환경경영시스템(SC1), 환경감사(SC2), 환경 라벨링(SC3), 환경성과평가(SC4), 전과정평가(SC5), 온실가스관리(SC7)의 6개 분과위원회(Sub-Committees)가 구성되어 세부논의가 진행되었으며, 이러한 과정을 분석함으로서 물발자국 국제표준(ISO 14046)과 향후 우리나라의 대응방안을 고찰하였다. 물발자국 국제표준(ISO 14046) 제정을 통해 물발자국의 필요성 및 중요성에 대한 국가 간 합의는 도출되었으나, 적용시기 및 세부적인 방법론 등에 대한 이견이 여전히 존재하고 있다. ISO 14046의 실질적 적용에 필요한 세부사항과 관련된 기술보고서 작업초안(WD 14073)은 작업반(SC5/WG8)에서 진행되고 있다. 그러나 물발자국 국제표준이 국가 간 무역장벽이나 특정국의 진입을 막는 수단으로 사용될 수 있는 점 등 실질적으로 국제표준의 도입에 따른 문제점 역시 존재한다. 본 연구에서 제시된 국제표준의 도입 방안을 통하여 가상수무역의 국제적 선점효과를 기대함과 동시에 수자원의 유효한 활용을 기대할 수 있을 것이다.

  • PDF

Water Scarcity Assessment Using Green and Blue Water Concepts (그린워터 및 블루워터를 이용한 물부족 평가)

  • Kim, Sung Eun;Lee, Dong Kun;Yang, Byung Sun;Jin, Yihua
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.267-278
    • /
    • 2018
  • With climate change and population growth, there are significant increases in water scarcity. There have been water security assessments to abate the gap between water demand and availability to support water resource management. However, most of the assessments are focusing on the water that flows through either on or below the land surface, failing to consider water that infiltrates and can be used by vegetation. This study presents water scarcity assessment accounting for Blue and Green water concept, and applied the method to Boryung region. Monthly streamflow, evapotranspiration, and soil moisture were estimated by SWAT modeling, and each of them was used to analyze Blue and Green water scarcity. Blue and Green water scarcity had different aspect, and the result indicated the time when water scarcity is more likely to happen. The water scarcity assessment framework presented in this paper provides novel assessment method integrating hydrologic and ecosystem aspects, thereby improving the understanding of how water resources should be managed.

Estimation of the international water footprint according to the trade of agricultural and livestock products (농.축산물 교역에 따른 물발자국 산정)

  • Lee, Sang-Hyun;Choi, Jin-Yong;Yoo, Seung-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.802-802
    • /
    • 2012
  • 물발자국은 개인이나 지역, 집단 등이 소비하는 재화와 서비스를 생산하는데 필요한 물의 총량을 나타낸다. 물발자국은 실제 눈에 보이지 않지만 생산품에 내포되는 수자원으로서 농 축산물의 국가간 교역시 가상수의 흐름이 내포되어 있고, 이에 따라 국가별, 품목별로 농 축산물 수출입에 따른 물발자국이 산정될 수 있다. 농 축산물의 물발자국은 농업용수와 관계가 있기 때문에 수출입 정책과 농업용수 수자원 확보를 동시에 고려하기 위하여 주요 농 축산물에 대한 국가간 가상수의 흐름을 분석하고, 이에 따른 국내의 물발자국의 영향을 살펴볼 필요가 있다. 이에 본 연구에서는 농 축산물 교역을 통하여 이동되는 가상수의 흐름과 양을 산정하고 국내의 내적, 외적 물발자국의 변화를 분석하고자 하였다. 먼저 과거 5년 이상의 국가간 농 축산물의 교역량을 조사하고, 주요 농 축산물에 대한 가상수량을 적용하여 국가별, 품목별 Green, Blue, Grey 물발자국을 각각 산정하고 비교하였다. 특히 Blue water는 인위적으로 공급되는 용수이므로 수자원 절약의 측면에서 중요한 의미를 지니고 있다. 다음으로 주요 농 축산물의 국가간 물발자국 산정결과를 통하여 우리나라의 내적, 외적 물발자국을 산정하였다. 내적 물발자국은 자국내에서 생산되는 농 축산물의 가상수를 의미하고, 외적 물발자국은 수입되는 농 축산물에 대한 가상수를 의미한다. 내적, 외적 물 발자국의 비교를 통하여 품목별로 우리나라의 수자원 의존도 등을 평가할 수 있다. 본 연구결과는 단순히 농 축산물의 교역이 물품의 흐름이 뿐만 아니라 물품에 포함되는 가상수의 흐름을 동시에 고려한 것으로서 향후 농 축산물 수출입 정책과 수자원 정책을 동시에 고려하는 농축산업 관련 정책 수립시 중요한 기초자료로서 활용될 수 있을 것으로 판단된다.

  • PDF

Simulation of Wheat Yield under Changing Climate in Pakistan (파키스탄 기후변화에 따른 밀생산량 모의)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.199-199
    • /
    • 2017
  • Sustainable wheat production is of paramount importance for attaining/maintaining the food self-sufficiency status of the rapidly growing nation of Pakistan. However, the average wheat yield per unit area has been dwindling in recent years and the climate-induced variations in rainfall patterns and temperature regimes, during the wheat growth period, are believed to be the reason behind this decline. Crop growth simulation models are powerful tools capable of playing pivotal role in evaluating the climate change impacts on crop yield or productivity. This study was aimed to predict the plausible variations in the wheat yield for future climatic trends so that possible mitigation strategies could be explored. For this purpose, Aquacrop model v. 4.0 was employed to simulate the wheat yield under present and future climatology of the largest agricultural province of Punjab in Pakistan. The data related to crop phenology, management and yield were collected from the experimental plots to calibrate and validate the model. The future climate projections were statistically downscaled from five general circulation models (GCMs) and compared with the base line climate from 1980 to 2010. The model was fed with the projected climate to simulate the wheat yield based on the RCP (representative concentration pathways) 4.5 and 8.5. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop yield decreased and water footprint, especially blue, increased, owing to the elevated irrigation demands due to accelerated evapotranspiration rates. The modeling results provided in this study are expected to provide a basic framework for devising policy responses to minimize the climate change impacts on wheat production in the area.

  • PDF