• Title/Summary/Keyword: Blue LED

Search Result 594, Processing Time 0.027 seconds

Design of White Balance Correction Processor for High Resolution Full Color LED Display System (고해상도 천연색 LED 디스플레이 시스템을 위한 흰색 보정프로세서의 설계)

  • Lee, Jong-Ha;Ko, Duck-Young
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.12-18
    • /
    • 2009
  • In this paper, we developed white balance correction processor for Full Color LED Display System which could be display uniformity color and soft light by adjusting brightness of red, green, blue pixel, individually. This processor correct brightness by calculating operating current of each pixel(red, green, blue LED) on the basis of characteristic curve of LED device when we named "a" as a specific characteristic value, "b" as a brightness correction value according to using time, "X" as a operating current value, and "Y" as brightness value. As the results, we solved the reduction problem of brightness for long used LED devices, according to increase entire mean of brightness value by adjusting "b" value from the brightness characteristic function.

Comparison of Marine Microalgae Growth Using LED Lights (LED광원을 이용한 해양미세조류의 성장 비교)

  • KANG, Man-Gu;LIM, Su Yeon;LEE, Chang-Hyeok;BAEK, Hyang Ran;SHIN, Jong-Ahm
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.552-559
    • /
    • 2017
  • To assess the effect of LED lights on marine microalgae growth in the laboatory, Tetraselmis suecica, Chaetoceros simplex and Isochrysis galbana were cultured under $20{\pm}1^{\circ}C$, Walne's medium and aeration using 3.6 L glass vessels. The LED light sources were Blue, Red, Blue+Red, CoolWhite and WarmWhite. The experiments were conducted three times. The density of microalgae was shown as the counted number of cells per day, and the specific growth rate was calculated by using the density. The statistical analysis was performed by analysis of variance using the SPSS 20.0 program. T. suecica culture was the highest density under the Blue LED light source, so the light source was the most effective for the growth of this alga. C. simplex and I. galbana culture had the highest density under the Blue+Red LED light source, therefore this light source was the most effective for the growth of these algae. The result of analysis of variance showed significant between groups.

The Effects of Artificial Light Sources on Lettuce Seedling Vigor and Growth

  • Hyeon-Do Kim;Yeon-Ju Choi;Eun-Young Bae;Byoung-Il Je;Jum-Soon Kang
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.305-322
    • /
    • 2024
  • The aim of this study was to investigate the effects of artificial light sources on the germination and seedling vigor of lettuce, aiming to identify the optimal artificial light source for producing high-quality seedlings. Lettuce cultivar of 'Tomalin' and 'Seonpunggold' exhibited the highest seed emergence in the Metal halide(MH) lamp and High-pressure sodium(HPS) lamp treatment group, while the emergence rate parameter, T50, was the fastest in the HPS lamp treatment group. Both cultivars showed good growth characteristics such as number of leaves, root length, and stem diameter under RGB-LED, and their seedling vigor was excellent as well. The plant height was smallest in the Red + Green + Blue LED treatment, but the leaves were round and thick, resulting in higher biomass and dry weight. Single light sources of Red LED and Blue LED led to reduced growth compared with that under the mixed light treatments. Chlorophyll content in lettuce varied with the type of artificial light, with both cultivars exhibiting the highest chlorophyll content in the Red + Green + Blue LED treatment. The most suitable artificial light for lettuce seedling growth was the Red + Green + Blue LED treatment.

Effects of LED (Light-Emitting Diode) Treatment on Antioxidant Activities and Functional Components in Taraxacum officinale (발광다이오드 처리가 서양민들레의 항산화 활성 및 기능성 성분 함량에 미치는 영향)

  • Ryu, Jai-Hyunk;Seo, Kyoung-Sun;Kuk, Yong-In;Moon, Jae-Hak;Ma, Kyung-Ho;Choi, Seong-Kyu;Rha, Eui-Shik;Lee, Sheong-Chun;Bae, Chang-Hyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.3
    • /
    • pp.165-170
    • /
    • 2012
  • This study was conducted to evaluate the effect of light spectrum using red (660 nm), blue (460 nm), red and blue mixed (Red : Blue = 6 : 4) LED (light-emitting diode), and fluorescent lamp on antioxidant activities and functional components of dandelion (Taraxacum officinale). Total polyphenol contents in dandelion irradiated with the red and blue mixed or the red LED were 121.77 mg/100 g or 115.36 mg/100 g, respectively, which were greater than those in dandelion treated with blue LED and fluorescent lamp. Asparagine showed the highest content among amino acids in leaves and roots regardless of treatments. Total amino acid was the highest when illuminated with the red LED. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging activity and SOD (super oxide dismutase) activity of ethanol extracts were increased under all of the LED treatments compared with fluorescent lamp, and the antioxidant activities were increased by the red and the mixed LED illumination. The results indicate that application of the red and the mixed LED illumination promote antioxidant activity and increase functional components during cultivation of dandelion.

Discoloration Effects of LEDs on Painting Binder Materials (LED광원에 의한 회화 전색제의 변색 영향 연구)

  • Kim, Ji Won;Lee, Yu Jung;Kim, Kyu Lin;Lee, Hwa Soo;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • In order to understand the influence of light artifact discoloration, priority must be given to the reaction characteristics of the light the materials constituting the product. In this study, we focus on two representative medium, animal glue and linseed oil which constitute the colored layer of the painting relics. This study is based on an accelerated degradation test using two types of light emitting diods (LEDs) with different wavelength characteristics. In the experiments, discoloration appeared markedly in the animal glue and linseed oil under accelerated aging test conditions using Blue LED. Among the two types of LEDs, the degree of discoloration of the material was much higher with the Blue LED having the total radiation flux (mW). This indicates that the discoloration of painting artifacts such as animal glue and linseed oil is more significantly influenced by the total radiation flux (mW) of the light source than the total luminous flux (lm).

Graft-taking Characteristics of Watermelon Grafted Seedlings as Affected by Blue, Red and Far-red Light-emitting Diodes (수박 접목묘의 활착 특성에 미치는 청색, 적색 및 원적색 발광다이오드의 영향)

  • 김용현;박현수
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • This study was performed to investigate the effect of light quality on evapotranspiration and graft-taking characteristics of watermelon grafted seedlings using blue, red and far-red light-emitting diodes (LED). At initial stage of graft-taking, blue light increased the evapotranspiration rate (EVTR) of grafted seedlings as compared to effects of red and far-red on EVTR of grafted seedlings. Grafted seedlings graft-taken under red and blue LED showed the high graft-taking of 100% and 96%, respectively. However, grafted seedlings graft-taken under far-red LED showed the graft-taking of 80% and survival of 60% with low seedlings quality after hardening. The stem of grafted seedlings graft-taken under red light was elongated but blue light suppressed the stem elongation. The leaf area of grafted seedlings graft-taken under red light was increased. It is concluded that the effect of light quality using LED on graft-taking of watermelon grafted seedlings was significantly recognized. Considering the duration of quality of grafted seedlings graft-taken under artificial lighting, LED could be used as an effective lighting sources to validate the continuance of seedling quality.

The Study of $Eu^{2+}$-activated Calcium Aluminium Silicate Phosphors for White UV-LED (백색 UV-LED를 위한 $Eu^{2+}$-활성화 칼슘 알루미늄 실리케이트 형광체 연구)

  • Hwang, Jung-Ha;Jang, Bo-Yun;Park, Joo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.32-35
    • /
    • 2006
  • For the white UV-LED applications, $Eu^{2+}$-activated calcium aluminium silicate phosphors were synthesized for the first time and the structures and luminescence characteristics of these phosphors were investigated. The phosphors in this study emitted blue. green or blue-green light depending on the starting materials for synthesis. In addition, the structure was also changed when the different starting materials were used. When CaO and $CaCO_3$ was used as a starting material. tetragonal $Ca_2Al_2SiO_7$ was formed and blue-green and pure green light was emitted. respectively. However. in the case of $CaSiO_3$, triclinic $CaAl_2Si2O_8$ was formed and only pure blue emission was detected. The maximum emission intensity was obtained from $CaAl_2Si_2O_8:Eu^{2+}$ phosphors, which intensity was about 1.4 times higher than that of YAG:$Ce^{3+}$ phosphor used for blue LED.

  • PDF

Effect of LED and QD-LED(Quantum Dot) Treatments on Production and Quality of Red Radish(Raphanus sativus L.) Sprout (LED와 QD-LED(Quantum Dot) 광처리가 적무 새싹의 생산과 품질에 미치는 영향)

  • Choi, In-Lee;Wang, Lixia;Lee, Ju Hwan;Han, Su Jung;Ko, Young-Wook;Kim, Yongduk;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.265-272
    • /
    • 2019
  • The purpose of this study was to investigate the effects of LED and QD-LED (Quantum Dot) irradiation on seed germination, antioxidant ability, and microbial growth, during red radish (Raphanus sativus L.) sprouts cultivation. Irradiated light was blue, red, blue + red and blue + red + far red (QD-LED) lights, and the controls were a fluorescent lamp (FL), and dark condition. Germination rate of red radish was highest in the dark condition. The plant height and fresh weight of red radish sprouts that irradiated each light for 24 hrs after 7 days growing in dark condition, did not shown significantly difference among treatments. After 24 hrs of light irradiation, cotyledon green was best in blue + red light, and the red hypocotyl was excellent in blue light and QD-LED light. DPPH and phenol contents were high in dark and blue + red light treatment, and anthocyanin content was high in blue light and QD-LED light. Total aerobic counts were similar in all treatments and did not show bactericidal effect, whereas E. coli count was lowest in QD-LED light treatment, and yeast and mold counts were lowest in FL only treatment. Results suggest that when red radish seeds were germinated in dark condition and cultivated for 7 days as sprouts, and then treated with blue light or QD-LED light for 24 hrs, the seeds produced good quality red radish sprouts with greenish cotyledon, reddish hypocotyl, high anthocyanin content, and lower level of E coli contamination.

Effects of the Spectral Quality and Intensity of Light-Emitting Diodes on Growth and Biochemical Composition of Chlorella vulgaris (발광다이오드 광량 및 파장에 따른 Chlorella vulgaris의 생장 및 생화학적 조성 변화 연구)

  • Ji Seung Han;Peijin Li;Tae-Jin Choi;Seok Jin Oh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.878-888
    • /
    • 2023
  • Growth responses of Chlorella vulgaris exposed to different light intensities and wavelengths of light-emitting diodes (LEDs) were investigated. C. vulgaris was cultured under red LED (650 nm), blue LED (450 nm), green LED (520 nm), and fluorescent lamps (three wavelengths, control). The maximum growth rates (µmax) of C. vulgaris were highest under the blue LED, followed by the red LED, green LED, and fluorescent lamps. The low compensation photon flux density (I0) and low half-saturation constants (Ks) were observed in C. vulgaris cultured under the red LED, indicating that high C. vulgaris growth is closely related to the low light intensity of the red LED suggesting that the red LED can be useful for the biomass production of C. vulgaris. Furthermore, it was observed that under the blue LED during the stationary phase, there was an increase in useful bioactive substances, such as proteins and lipids, which are beneficial for biomass production. In conclusion, the red LED is an economical light source that can enhance cell density, and the blue LED is effective in promoting valuable intracellular substances.

Wide Color Gamut Backlight from Three-band White LED

  • Kim, Il-Ku;Chung, Kil-Yoan
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.67-70
    • /
    • 2007
  • A Wide Color Gamut Backlight system was studied using a three-band white Light-Emitting Diode. A three-band white light-emitting diode (LED) was fabricated using an InGaN-based blue LED chip that emits 445-nm blue peak, and a green phosphor and red phosphor that emit 535-nm green and 621-nm red peak emissions, respectively, when excited by 450-nm blue light. Using for this three-band white LED, wide color gamut backlight unit (BLU) was attained. The luminance of BLU and CIE 1931 chromaticity coordinates was $1,700Cd/m^2$ and (0.337, 0.346). Color filter matching simulations for this configuration show that the three-band white LED backlight can be enhanced by up to 16% over conventional white LED backlight color gamut.