• Title/Summary/Keyword: Blue Fluorescent

Search Result 276, Processing Time 0.184 seconds

Simple Classification of Male Mouse Germ Cells using Hoechst 33258 Staining (Hoechst 33258 Staining을 이용한 웅성 생쥐 성세포의 간편 분류)

  • Kim, Kyoung Guk;Park, Young Sik
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.213-218
    • /
    • 2015
  • In the study for a differentiation and development of spermatogonial cells, the researchers should commonly require a simple, fast and reasonable method that could evaluate the developmental stage of male germ cells without any damage and also relentlessly culture them so far as a cell stage aiming at experimental applications. For developing the efficient method to identify the stage of sperm cells, the morphological characteristics of sperm cells were investigated by staining the cells with blue fluorescent dye Hoechst 33258, and a criterion for male germ cell classification was elicited from results of the previous investigation, then the efficiency of the criterion was verified by applying it to assort the germ cells recovered from male mice in age from 6 to 35 days. As morphological characteristics, spermatogonia significantly differed from spermatocytes in size, appearance and fluorescent patches of nucleus, and spermatids could also be distinguished from spermatozoa by making a difference in the volume and shape of nucleus and the shape and fluorescence of tail. Aforesaid criterion was applicable for classifying in vitro cultured sperm cells by verifying its efficiency and propriety for assorting the stages of testicular germ cells. However, the fluorescent staining showed that germ cells in mouse testis should be dramatically differentiated and developed at 21 days and 35 days of age, which were known as times of sexual puberty and maturity in male mice, respectively. In conclusion, the results indicated that this simple criterion for sperm cell classification using fluorescence staining with Hoechst 33258 may be highly efficient and reasonable for spermatogenesis study.

Effect of Light-emitting Diodes on Photosynthesis and Growth of in vitro Propagation in Tea Tree (Camellia sinensis L.) (LED 광질이 차나무 기내배양묘의 생육 및 광합성에 미치는 영향)

  • Im, Hyeon-Jeong;Na, Chae-Sun;Song, Chi-Hyeon;Won, Chang-O;Song, Ki-Seon;Hwang, Jung-Gyu;Kim, Do-Hyun;Kim, Sang-Geun;Kim, Hyun-Chul
    • Journal of agriculture & life science
    • /
    • v.53 no.6
    • /
    • pp.13-21
    • /
    • 2019
  • The influences of light generated by LEDs on shoot growth and photosynthesis of Tea plant(Camellia sinensis L.) were evaluated. The growth characteristics were investigated after 45 days of culture under four different light qualities: fluorescent lamp, red LED, blue LED, red+blue+white LED. Shoot growth was promoted by red light, especially root length and area were further promoted under the red+blue+white LED. Also, T/R ratio and Chlorophyll content were highest in red+blue+white. Fluor Cam was used to measure the fluorescence images of the plants, inhibition of photochemical efficiency(Fv/Fm) were not changed in all treatment. However, non-photochemical quenching(NPQ) were found rapidly increasing in blue LED, these results were that blue LED were inhibit photosynthetic efficiency and must be considered for efficiently in vitro cultivation of the tea plant. The above results suggest that light qualities could be an important factor to foster in vitro growth of the species. Also, In order to produce healthy plants, it is effective to using light qualities of red+blue+white LED on in vitro culture of the tea plant. These results could be used to mass propagating shoot and produce of healthy seedling.

Three White Organic Light-emitting Diodes with Blue-green Fluorescent and Red Phosphorescent Dyes

  • Galbadrakha, Ragchaa;Bang, Hwan-Seok;Baek, Heume-Il;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.9 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • This paper reports that well-balanced white emission with three primary colors can be achieved with a simple white organic light-emitting diode (WOLED) structure of ITO / $\alpha$-NPD (50 nm) / $\alpha$-NPD: Btp2Ir(acac) (8 wt%, 6 nm) / $\alpha$-NPD (5 nm) / BCP (3 nm) / $Alq_3$: C545T (0.5 wt%, 10 nm) / $Alq_3$ (40 nm) / LiF (0.5 nm) / Al (100 nm). The external quantum efficiency of the device reached 3.8% at a current density (luminance) of 4.6 mA/$cm^2$ (310 cd/$m^2$), and the maximal luminance of the device reached 19,000 cd/$m^2$ at 11.5 V. The insignificant blue shift of the emitting color with an increasing current density can be attributed to the narrowing of the exciton formation zone width.

Colloidal Textile Dye-Based Dipstick Immunoassay for the Detection of Infectious Flacherie of Silkworm, Bombyx mori L.

  • Sivaprasad, V.;Nataraju, B.;Renu, S.;Datta, R.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.1
    • /
    • pp.27-31
    • /
    • 2003
  • Infectious flacherie of silkworm Bombyx mori is caused by B. mori infectious flacherie virus (BmIFV) and causes severe crop loss to sericulturists. In the present study, a colloidal textile dye-based dipstick immunoassay is developed for the detection of infectious flacherie in silkworms. Colloidal textile dye (blue D2R) with Aλ$_{max}$ at 620 nm was sensitised with 500 $\mu\textrm{g}$/ml of purified anti-BmIFV IgG. The dye-antibody reagent detects purified antigen up to 10 ng/ml and BmIFV infection in diseased larval extracts $(up to a dilution of {10^-5})$ and faecal matter extracts $(up to a dilution of {10^-2})$ by forming clear blue dot within 30 min. It was observed to be stable for three months period at $4^{\circ}C$. The efficacy of textile dye-based dipstick immunoassay was on pay with HRP-based dipstick immunoassay and fluorescent antibody test, and better than latex agglutination and ouchterlony tests in the detection of BmIFV The dye-based dipstick immunoassay method provides a simple, sensitive and less expensive test for the detection of BmIFV infection in silkworms.s.

Development of Blue Fluorescent Light Hole Transport Layer of Thiophene Base (싸이오펜 기반 청색 인광용 정공수송층 개발)

  • Ki, Hyun-Chul;Shin, Hyeon Oh;Hwang, Eun Hye;Kwon, Tae-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.91-95
    • /
    • 2017
  • We were designed the hole transport layer of the new composite skeleton structure having a high charge mobility and thermal stability. In this paper, a hole transport layer material based on thiophene molecular structure capable of hole mobility characteristics and high triplet energy was designed and synthesized. The structures and properties of the synthesized compounds were characterized by NMR, fluorescence spectroscopy and energy band gap. As a result of NMR measurement, it was confirmed that when analyzing the integrated type with the position where the measured peak is displayed, it agrees with the structure of hole transport materials. The emission characteristics of the hole transport layer material showed absorption characteristics at 412 nm and 426 nm, respectively, and exhibited emission characteristics in the range of 469 nm and 516 nm.

The Fabrication and Characteristics of White Organic Light-Emitting Diodes using Blue and Orange Emitting Materials (청색과 오렌지색 발광재료를 사용한 백색 유기발광소자 제작 및 특성 분석)

  • Kang, Myung-Koo
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.1-6
    • /
    • 2006
  • The white organic light emitting diode(OLED) with two-wavelength was fabricated using the DPVBi of blue emitting material and a series of orange colar fluorescent dye(Rubrene) by vaccum evaporation processes. The basic structure of OLED was ITO/TPD$(225{\AA})$/DPVBi/Rubrene/BCP$(210{\AA})/Alq_3(225{\AA})/Al(1000{\AA})$. We analyzed the fabricated device through the changes of the DPVBi and Rubrene layer's thickness. We obtained the white OLED with the CIE coordinate of the device was (0.29, 0.33) and luminescence of $1000cd/m^2$ at applied voltage of 15V when 4he thickness of DPVBi layer was 210${\AA}$ and the thickness of Rubrene layer was 180${\AA}$.

Analysis of the Optical and Electrical Properties of a White OLEDs Using the newly Synthesized Blue Material (신규 합성 청색재료를 사용한 백색 유기발광소자의 광학적$\cdot$전기적 특성평가)

  • Yoon Seok Beom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.1-6
    • /
    • 2005
  • White light emission is very important for applying electroluminescent device to full display, backlight and illumination light source. In this letter, Multilayer molecular organic white-light-emitting device using thin nim of blue material nitro-DPVT with fluorescent dye Rubrene for an orange emission were fabricated. The basic structure of the fabricated device is a-NPD / nitro-DPVT / nitro- DPVT:Rubrene / BCP/ Alq3. Aluminum is used as the cathode material and ITO was anode material. The white light emission spectrum covers a wide range of the visible region and the Commission Internationale do I'E clairage (C.I.E.) coordinates of the emitted light was ((0.3347, 0.3515) at 14V. The turn voltage is as low as 2.5V and quantum efficiencies are $0.35\%$.

  • PDF

Fluorescence Spectroscopy Studies on Micellization of Poloxamer 407 Solution

  • Lee, Ka-Young;Shin, Sang-Chul;Oh, In-Joon
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.653-658
    • /
    • 2003
  • It has been reported that at low temperature region, poloxamers existed as a monomer. Upon warming, an equilibrium between unimers and micelles was established, and finally micelle aggregates were formed at higher temperature. In this study, the fluorescence spectroscopy was used to study the micelle formation of the poloxamer 407 in aqueous solution. The excitation and emission spectra of pyrene, a fluorescence probe, were measured as a function of the concentration of poloxamer 407 and temperature. A blue shift in the emission spectrum and a red shift in the excitation spectrum were observed as pyrene transferred from an aqueous to a hydrophobic micellar environment. From the $I_1/I_3 and I_{339}/I_{333}$ results, critical micelle concentration (cmc) and critical micelle temperature (cmt) were determined. Also, from the fluorescence spectra of the probe molecules such as 8-anilino-1-naphthalene sulfonic acid and 1-pyrenecarboxaldehyde, the blue shift of the $\lambda_{max}$ was observed. These results suggest a decrease in the polarity of the microenvironment around probe because of micelle formation. The poloxamer 407 above cmc strongly complexed with hydrophobic fluorescent probes and the binding constant of complex increased with increasing the hydrophobicity of the probe.

Effect of Light Emitting Diode and Fluorescent Light on Volatile Profiles of Soybean Oil during Storage (콩기름 저장 중 휘발성분에 대한 LED와 형광등 광원 조사의 영향)

  • Park, In-Seon;Choi, Duck-Joo;Youn, Aye-Ree;Lee, Youn-Jung;Kim, Youn-Kyeong;Kim, Mun-Ho;Choi, So-Rye;Kim, Ki Hwa;Dong, Hyemin;Han, Hyun Jung;Noh, Bong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.763-769
    • /
    • 2013
  • Soybean oil was stored in polyethylene for 12 weeks at $20^{\circ}C$. The influence of LED (light emitting diode) irradiation on four different wavelengths and fluorescent light was investigated. The pattern changes of volatile components in soybean oil was analyzed by electronic nose based on mass spectrometer. The obtained data from electronic nose were analyzed by discrimination function analysis. Under fluorescent light, the discriminant function first score (DF1) was significantly moved from positive position to negative one after 4-12 weeks. It means that the volatile compounds related to quality of lipid. It was shown to increase slowly due to green light of LED treatment, while blue and white LED light was influenced significantly as well as fluorescent light irradiation. Selection of LED irradiation would provide to keep good quality of soybean oil under distribution chain system.

FLUORESCENT LABELLING OF MC3T3 CELL LINE BY 5-(AND-6)-CARBOXY-2', 7'-DICHLOROFLUORESCEIN DIACETATE, SUCCINIMIDYL ESTER MIXED (MC3T3 preosteoblast cell line의 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester mixed에 의한 fluorescent labelling)

  • Kook, Min-Suk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.6
    • /
    • pp.461-467
    • /
    • 2005
  • Background. 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester mixed (CFSE) is the fluorescent labelling agent of living cells and used to trace the cells in vivo after transplatnation of various cells. The CFSE labelled cells can maintain fluorescence for up to 7 days after labelling. The MC3T3-E1 cell line (MC3T3) has been used for many studies about osteoblast, which is well known as a mouse preosteoblast. So the CFSE would be used to trace the transplanted MC3T3. However there are few reports about CFSE labelling of MC3T3. This study is aimed to know about adequate concenturation and incubation time of CFSE to MC3T3. Materials and methods. The MC3T3 was incubated in a humidified atmosphere of 95% air with 5% $CO_2$ at $37^{\circ}C$ using ${\alpha}$-minimal essential medium (${alpha}$-MEM) containing10% FBS and gentamycin. Ten mM CFSE solution in dimethylsulphoxide (DMSO: 1%) was diluted with phosphate buffered saline (PBS) and final concentration of culture medium was, respectively, 5, 10, 15, 20, 25 and 30 ${{\mu}M$. Then the MC3T3 was incubated with CFSE in a humidified atmosphere of 95% air with 5% $CO_2$ at $37^{\circ}C$ for 5, 10, 15, 20, 25, 30, 35, 40 and 45 minutes in each concentration. The fluorescence of CFSE labelled cells was analysed with a inverted fluorescence microscope. The duration of cell labelling was also studied. Trypan blue dye exclusion test was done for cell viability. Results. For concentration between 5 and 10 ${\mu}M$, CFSE did not significantly label the MC3T3 in vitro. The destruction of MC3T3 was observed at the concentration of 20 ${\mu}M$. In the concentration of 15 ${\mu}M$, the best labelling was obtained at an incubation period between 15 and 30 minutes. The MC3T3 labelled with an incubation period of 15 minutes at 15 ${\mu}M$ was still fluorescent 7 days after CFSE labelling. The mean cell viability was 95.93%. Conclusion. These results suggests an incubation period of 15 minutes at 15 ${\mu}M$ of CFSE provides best labelling of MC3T3 in vitro.