• Title/Summary/Keyword: Blue Carbon

Search Result 287, Processing Time 0.031 seconds

Estimation of carbon storage in coastal wetlands and comparison of different management schemes in South Korea

  • Byun, Chaeho;Lee, Shi-Hoon;Kang, Hojeong
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.61-72
    • /
    • 2019
  • Background: Organic carbon stored in coastal wetlands, which comprises the major part of oceanic "blue carbon," is a subject of growing interest and concern. In this study, organic carbon storage in coastal wetlands and its economic value were estimated using the raw data of 25 studies related to soil carbon storage. Data were collected from three tidal flats (one protected and two developed areas) and two estuarine salt marshes (one protected and one restored area). Bulk density, soil organic matter content, and standing biomass of vegetation were all considered, with Monte Carlo simulation applied to estimate the uncertainty. Results: Mean carbon storage in two salt marshes ranged between 14.6 and $25.5kg\;C\;m^{-2}$. Mean carbon storage in tidal flats ranged from 18.2 to $28.6kg\;C\;m^{-2}$, with variability possibly related to soil texture. The economic value of stored carbon was estimated by comparison with the price of carbon in the emission trading market. The value of US $ $6600\;ha^{-1}$ is ~ 45% of previously estimated ecosystem services from fishery production and water purification functions in coastal areas. Conclusions: Although our study sites do not cover all types of large marine ecosystem, this study highlights the substantial contribution of coastal wetlands as carbon sinks and the importance of conserving these habitats to maximize their ecosystem services.

Removal Characteristics of Crystal Violet and Methylene Blue from Aqueous Solution using Wood-based Activated Carbon (목질계 활성탄에 의한 수중의 Methylene blue와 Crystal violet의 제거 특성)

  • Jeon, Jin-Wo;Yu, Hae-Na;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1433-1441
    • /
    • 2013
  • The adsorption ability of wood-based activated carbon to adsorb methylene blue (MB) and crystal violet (CV) from aqueous solution has been investigated. Adsorption studies were carried out on the batch experiment at different initial MB and CV concentrations (MB=150 mg/L~400 mg/L, CV=50 mg/L~350 mg/L), contact time, and temperature. The results showed that the MB and CV adsorption process followed the pseudo-second-order kinetic and intraparticle diffusion was the rate-limiting step. Adsorption equilibrium data of the adsorption process fitted very well to both Langmuir and Freundlich model. The maximum adsorption capacity ($q_m$) by Langmuir constant was 416.7 mg/g for MB and 462.4 mg/g for CV. The thermodynamic parameters such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$ and ${\Delta}G^{\circ}$ were evaluated. The MB and CV adsorption process was found to be endothermic for the two dyes.

Effect of nano-carbon addition on color performance of polystyrene superstructure film

  • ZHOU, Ye-min;Wang, Li-li;LI, Xiao-peng;Wang, Xiu-feng;Jiang, Hong-tao
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.479-482
    • /
    • 2018
  • Polystyrene superstructure films show faint rainbow color, and this low color saturation limits its wide application. In this paper, polystyrene superstructure films with single bright blue color were prepared by vertical deposition self-assembly method using polystyrene microspheres with average diameter of $310{\pm}10nm$ as raw material. Polystyrene superstructure films were modified by adding nano-carbon powder, and effect of the amount of nano-carbon powde on color performance was studied. The results showed that without addition of nano-carbon powder, the superstructure films showed a faint rainbow color, while with addition of nano-carbon power, the superstructure films exhibited a single bright blue under the same natural light source. Changing the amount of nano-carbon powder addition could adjust color saturation of the film. With increasing the amount of nano-carbon powder addition from 0.008 wt% to 0.01 wt%, color saturation of the superstructure film increased gradually. Further increasing the amount of nano-carbon powder addition to 0.011wt%, color saturation of the superstructure film didn't increase anymore and tended to get dark.

Electrochemical Sensing of Hydrogen Peroxide Using Prussian Blue@poly(p-phenylenediamine) Coated Multi-walled Carbon Nanotubes

  • Young-Eun Jeon;Wonhyeong Jang;Gyeong-Geon Lee;Hun-Gi Hong
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.339-347
    • /
    • 2023
  • In this study, a nanocomposite of multi-walled carbon nanotubes@poly(p-phenylenediamine)-Prussian blue (MWCNTs@PpPD-PB) was synthesized and employed for the electrochemical detection of hydrogen peroxide (H2O2). A straightforward approach was utilized to prepare an electrochemical H2O2 sensor using a MWCNTs@PpPD-PB modified glassy carbon electrode, and its electrochemical behavior was investigated through techniques such as electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The modified electrode displayed a favorable electrocatalytic response towards the reduction of H2O2 in an acidic solution. The developed sensor exhibited linearity in the concentration range of 0.005 mM to 2.225 mM for H2O2, with high sensitivity (583.6 ㎂ mM-1cm-2) and a low detection limit (0.95 ㎛, S/N = 3) at an applied potential of +0.15 V (vs. Ag/AgCl). Additionally, the sensor demonstrated excellent selectivity, reproducibility, and stability. Moreover, successful detection of H2O2 was achieved in real samples.

Soil organic carbon variation in relation to land use changes: the case of Birr watershed, upper Blue Nile River Basin, Ethiopia

  • Amanuel, Wondimagegn;Yimer, Fantaw;Karltun, Erik
    • Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.128-138
    • /
    • 2018
  • Background: This study investigated the variation of soil organic carbon in four land cover types: natural and mixed forest, cultivated land, Eucalyptus plantation and open bush land. The study was conducted in the Birr watershed of the upper Blue Nile ('Abbay') river basin. Methods: The data was subjected to a two-way of ANOVA analysis using the general linear model (GLM) procedures of SAS. Pairwise comparison method was also used to assess the mean difference of the land uses and depth levels depending on soil properties. Total of 148 soil samples were collected from two depth layers: 0-10 and 10-20 cm. Results: The results showed that overall mean soil organic carbon stock was higher under natural and mixed forest land use compared with other land use types and at all depths ($29.62{\pm}1.95Mg\;C\;ha^{-1}$), which was 36.14, 28.36, and 27.63% more than in cultivated land, open bush land, and Eucalyptus plantation, respectively. This could be due to greater inputs of vegetation and reduced decomposition of organic matter. On the other hand, the lowest soil organic carbon stock under cultivated land could be due to reduced inputs of organic matter and frequent tillage which encouraged oxidation of organic matter. Conclusions: Hence, carbon concentrations and stocks under natural and mixed forest and Eucalyptus plantation were higher than other land use types suggesting that two management strategies for improving soil conditions in the watershed: to maintain and preserve the forest in order to maintain carbon storage in the future and to recover abandoned crop land and degraded lands by establishing tree plantations to avoid overharvesting in natural forests.

Equilibrium and Dynamic Adsorption of Methylene Blue from Aqueous Solutions by Surface Modified Activated Carbons

  • Goyal, Meenakshi;Singh, Sukhmehar;Bansal, Roop C.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.170-179
    • /
    • 2004
  • The equilibrium and dynamic adsorption of methylene blue from aqueous solutions by activated carbons have been studied. The equilibrium studies have been carried out on two samples of activated carbon fibres and two samples of granulated activated carbons. These activated carbons have different BET surface areas and are associated with varying amounts of carbon oxygen surface groups. The amounts of these surface groups was enhanced by oxidation with $HNO_3$ and $O_2$ gas at $350^{\circ}C$ and decreased by degassing at increasing temperatures of $400^{\circ}$, $650^{\circ}$ and $950^{\circ}C$. The adsorption increases on oxidation of the carbon surface and decreases on degassing. The increase in adsorption has been attributed to the formation of acidic carbon-oxygen surface groups and the decrease in adsorption on degassing to their elimination. The dynamic adsorption studies have been carried out on the two granulated activated carbons using two 50 mm diameter glass columns at a feed concentration of 300 mg/L and at different hydraulic loading rates (HLR) and bed heights. The minimum achievable concentrations are comparatively lower while the adsorption capacities are higher for GAC-S under the same operating conditions. The adsorption capacity of a carbon increases with increase in HLR but the rate of increase decreases at higher HLR values.

  • PDF

A Study on The Photosynthesis Accelerate by Light Color Composition in Plant Factory (식물공장 광원의 색조합에 따른 광합성활성화에 관한 연구)

  • Hong, Ji-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.368-375
    • /
    • 2016
  • This study examined the criteria for efficient LEDs used throughout the experiment of an LED with another light color growth to be used in a plant factory. The experiment was confirmed by measuring the Red-LED, Blue-LED, plant growth, and amount of carbon reduction in a White-LED environment. The white-LED showed a similar growth trend to the Red-LED. Blue-LED showed the lowest growth. Measurements of the carbon dioxide levels, showed that the Red-LED and blue LED produced the lowest levels. The combination of the ratio of the LED showed four Red-LEDs and one blue LED to be the higher of the two. In addition, three Red-LED and one Blue-LED produced equal growth to that of the white-LED. In addition, as much as possible, red is the light color that obtains the result suitable for plant factories.

Characteristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon (활성탄에 의한 Reactive Blue 4 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • The isotherm, kinetic, and thermodynamic parameters of reactive blue 4 adsorbed by activated carbon were investigated for activated carbon dose, pH, initial concentration, contact time, and temperature data. The adsorption of the RB 4 dye by activated carbon showed a concave shape in which the percentage of adsorption increased in both directions starting from pH 7. The isothermal adsorption data were applied to Langmuir, Freundlich, and Temkin isotherms. Both Freundlich and Langmuir isothermal adsorption models fit well. From determined Freundlich separation factor (1/n = 0.125 ~ 0.232) and Langmuir separation factor (RL = 1.53 ~ 1.59), adsorption of RB 4 by activated carbon could be employed as an effective treatment method. The constant related to the adsorption heat (BT = 2.147 ~ 2.562 J mol-1) of Temkin showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good agreement. The results of the intraparticle diffusion model showed that the inclination of the first straight line representing the surface diffusion was smaller than that of the second straight line representing the intraparticle pore diffusion. Therefore, it was confirmed that intraparticle pore diffusion is the rate-controlling step. The negative Gibbs free energy change (ΔG = -3.262 ~ -7.581 kJ mol-1) and the positive enthalpy change (ΔH = 61.08 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, proving this process to be spontaneous and endothermic.

Photocatalytic Degradation of Methylene Blue by Pd/MWCNT/TiO2 under UV and Visible Light Irradiation

  • Choi, Jong Geun;Park, Chong-Yeon;Zhu, Lei;Meng, Ze-Da;Ghosh, Trisha;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.511-517
    • /
    • 2012
  • Pd/MWCNT/$TiO_2$ composites were synthesized by a sol-gel technique using multi-walled carbon nanotubes (MWCNT), palladium (II) chlorite ($PdCl_2$) and titanium tetrachloride ($TiCl_4$) as the carbon, palladium and titanium precursors. The Pd/MWCNT/$TiO_2$ composites prepared were characterized by BET surface area measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic activity of the composites was evaluated using the degradation of methylene blue (MB) under UV and visible light irradiation as a model.

Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Photoelectrocatalytic decolorization of methlene blue (MB) in the presence of two types of carbon nanotube/titania and yttrium-treated carbon nanotube/titania electrodes in aqueous solutions were studied under visible light. The prepared composite electrodes were characterized by X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis, and photoelectrocatalytic activity. The photoelectrocatalytic performances of the supported catalysts were evaluated for the decolorization of MB solution under visible light irradiation. The results showed that yttrium incorporation enhanced the decolorization rate of MB. It was found that the photoelectrocatalytic degradation of a MB solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, the enhancement of yttrium and a function of the applied potential. The repeatability of photocatalytic activity was also tested. The presence of yttrium enhanced the hydrophillicity of yttrium-carbon nanotubes/titania electrode because more OH groups can be adsorbed on the surface.